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Overview
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• Challenges for Semantic Integration

• A Brief Introduction to UTP

• Application of UTP to Formalizing AADL

• Current State of Work

• Future Outlook and Conclusion
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RDE: The Big Picture
• At Galois we design, build, and assure high-assurance systems using a 

development process and methodology we call Rigorous Digital 
Engineering, or RDE for short.


• RDE enables software, hardware, and systems engineers to use formal 
methods (FM) without really knowing they are doing FM—what we call 
Secret Ninja Formal Methods (SNFM).


• Doing RDE with SNFM means precisely describing what a system is 
meant to do by stating what properties it must have, and demonstrating 
that the system conforms to that description—aka writing specifications 
and performing (rigorous) validation and (formal) verification.


• But any complex system requires writing specifications in several 
different specification languages—AADL among them—and these 
specifications all inter-relate to each other, and thus at its core we have a 
semantic integration challenge.


We hypothesize that Unified Theories of Programming (UTP)  
will help us practically and foundationally to solve  

this semantic integration challenge.
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Rigorous Digital Engineering
• Rigorous Digital Engineering (RDE) is all 

about…

• the use of (preferably executable) models 

(with preferably known fidelity) to

• rigorously, authentically describe things

• at various levels of abstraction

• such that the models relate to each other

• in well-understood ways

• and the models refine to bits or atoms

• and thus all of this connects to software, 

hardware, and systems engineering

• and we use the models to provide 

assurance of various kinds for the 
product line / product  /platform / system
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…with Applied Formal Methods
• applied formal methods is about the practical 

application of formal methods to all stages of a 
system’s life cycle:

➡ process, methodology, design, development, 

assurance, maintenance, and evolution.

• hold no bias in choice of formal method, tool, or 

technology—just choose the right tool for the job

• often focuses on finding key places where small 

changes to the lifecycle have large impact

• and nearly always hides formalism from the typical 

user a la Secret Ninja Formal Methods
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The Technologies of RDE
The technology stacks supported thus far by the RDE methodology include:

• many different kinds of programming languages (procedural, object-

oriented, functional, hardware, logic, and mixed-model, such as C, C++, 
C#, Rust, Haskell, Java, Scala, Kotlin, Eiffel, Chisel, Bluespec 
SystemVerilog (BSV), System Verilog, VHDL)


• specification and modeling languages (such as F*, ACSL, JML, 
CodeContracts, Alloy, Z, VDM, Event-B, RAISE)


• architecture specification tools and languages (such as Cameo, Rhapsody, 
MagicDraw, OSATE, Visual Paradigm and UML, AADL, and SysML, resp.)


• integrated development environments (such as Eclipse, Visual Studio, 
Visual Studio Code, and IntelliJ IDEA)


• formal modeling and reasoning tools (such as Alloy, PVS, Coq, Isabelle, 
UPPAAL, CZT, Overture, Rodin, Frama-C, SAW, Ivy, TLA Toolbox, FDR4, 
NuSMV, BLAST, and SPIN)


• operating systems (RTOSs, UNIX variants, seL4, etc.)

• spans systems, hardware (ASIC and FPGA-based), firmware, and software
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Some Example RDE Projects
• For example, a couple of medium-sized systems created at 

Galois with RDE over the past decade are the SHAVE and 
HARDENS systems.

• SHAVE is a bump-in-wire encryption device that includes a 

soft core CPU, measured boot, and cryptography in 
hardware and firmware.


• HARDENS is an Instrumentation and Control (I&C) system 
for a Reactor Trip System, providing a fault-tolerant 
protection system for Nuclear Power Plants.


• SHAVE includes nearly a dozen specification and programming 
languages (ACSL, Aoraï, ASM, BSV, C, Cryptol, EBON, LLVM, 
PVS, SAW, and SV).


• HARDENS includes just over a dozen specification and 
programming languages (AADL, SysML, ACSL, ASM, BSV, C, 
Cryptol, FRET, Lando, LLVM, Lobot, SAW, and SV).
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Challenges to Semantic Integration

• Relating all of these specifications and 
implementations—semantically and practically—is 
currently fully supported by the RDE process and 
methodology, but only partly by automated tools.


• Our work using UTP via SNFM is meant to provide 
a mathematical foundation to these relations. 

Our goal is full, invisible automated tooling for: 
model-model/model-code refinement checking, 

extraction of model/code refinements from models, 
lifting of abstractions from models and code.

This work is supported by Government grants from many agencies, including AFRL, ARL, DARPA, EC, NRC, NSA, SDA, SFI, and others.
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Anatomy of AADL Semantics

AADL Core 
Language

Described in the 
SAE AADL Standard 
AS5506[A,B,C,D]

https://www.sae.org/standards/content/as5506
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Extended Behavioral Semantics

AADL Annexes 
(AGREE, GUMBO, BLESS, etc.)
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First issue of unification Extended Behavioral Semantics

AADL Annexes 
(AGREE, GUMBO, BLESS, etc.)
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Concerns for Subtheories
• Core Structural Semantics


- well-formedness of AADL models; i.e.,

- naming, legality and consistency rules


• Core Behavioral Semantics

- reactivity and communication

- timing and scheduling behavior

- guarantees made by a run-time framework


• Extended Behavioral Semantics

- inclusion of BISL and contract frameworks

- embedding of a refinement calculus with a guarded 

command language for expressing implementations

- whatever formal model a particular annex requires …

?
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A Vision for Semantic Integration

• Extensions of the AADL language (via annexes, 
custom properties, and so on …) are mirrored by 
an extensions to the (core) semantics.


• As syntactic entities and concepts are referenced 
and reused, so are formalized semantic ones.


• Requires a certain degree of modularity and 
compositionality of the semantic framework.


• Verification notions, such as refinement change 
(become stronger) as we specialize the language.


• Question: How to mechanize all this in a theorem 
prover in a plug-and-play fashion?

mirrored
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A Word on Refinement
• Refinement is a formal (mathematical) relationship 

between specification and their implementations.

- E.g., S ⊑ T logically means that T is a valid 

implementation of specification S.

- This ought be a provable/falsifiable statement.


• The distinction between specifications and their 
implementations is already present in AADL.


• Hence, AADL ought to lend itself well for integration 
into refinement-centric reasoning techniques.


• Hoare’s Unifying Theories of Programming (UTP) 
is one such a technique (and more) …
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UTP in a Nutshell
• Proposed in Tony Hoare and He Jifeng’s seminal 

book “Unifying Theories of Programming” (1998).

• Presents a unified framework in which the 

semantics of specification, design, modeling, and 
programming languages of any kind and flavor can 
be uniformly described.


• Inspired by scientific / engineering theories:

- theories describe “observable behaviors”

- consider Boyle’s law: PV = k (pressure multiplied 

by volume equals to some constant k)

- UTP computations are in essence predicates
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UTP in a Nutshell
• Proposed in Tony Hoare and He Jifeng’s seminal 

book “Unifying Theories of Programming” (1998).

• Presents a unified framework in which the 

semantics of specification, design, modeling, and 
programming languages of any kind and flavor can 
be uniformly defined.


• Inspired by scientific / engineering theories:

- theories describe “observable behaviors”

- consider Boyle’s law: PV = k (pressure multiplied 

by volume equals to some constant k)

- UTP computations are in essence predicates

Think of observing the 
interactions of an AADL 
component through its 
ports with an environment.
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Observable Qualities

• Observable qualities are defined by the alphabet of 
a UTP predicate (𝛼P):


- they can be program variables …

- … or auxiliary variables of a computational 

paradigm such as:

- ok :  𝔹, tr : seq(Event), ref : 𝓟(Event), and so on.


• In AADL, we, e.g., have a variable that records the 
topological structure of a model.

- leaving suitable “gaps” for additional semantic 

information in subtheories (extend alphabet) …
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Observable Qualities

• Observable qualities are defined by the alphabet of 
a UTP predicate (𝛼P):


- they can be program variables …

- … or auxiliary variables of a computational 

paradigm such as:

- ok :  𝔹, tr : seq(Event), ref : 𝓟(Event), and so on.


• In AADL, we, e.g., have a variable that records the 
topological structure of a model.

- leaving suitable “gaps” for additional semantic 

information in subtheories (extend alphabet) …

A wealth of UTP theories 
already exists for common 
sequential, reactive and 
hybrid prog. notations.
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UTP Semantic Triangle

Denotational 
Semantics

Alphabetized relations

presented as 
logic predicates
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• Denotational semantics is considered the “gold standard”  
and point of reference for other semantic presentations.
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• Denotational semantics is considered the “gold standard”  
and point of reference for other semantic presentations.
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UTP Semantic Triangle

Denotational 
Semantics

Alphabetized relations

Algebraic 
Semantics

Derive / Verify

Equiv. & Refinement Laws

Operational 
Semantics

Transition / step relation

Validate  
Soundness

Derive / Verify

Can be used to derive various 
types of axiomatic semantics too,

e.g., Hoare-style program calculi.

(e.g., via 
bisimulation)

presented as 
logic predicates

Most useful basis for SNFM
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Review of Semantic Approaches 
• Denotational semantics:


- encapsulated by UTP theories (“healthy” predicate sets);

- copes well with everything: iteration, recursion, non-determinism, 

refinement, and compositional development;

- but carries the heavy burden of a mathematical model with it.


• Algebraic semantics:

- especially useful for refactoring, refinement, code generation and 

optimization, as well as pattern-based design;

- may be incomplete and less tractable in axiomatic frameworks.


• Operational semantics:

- mimics abstract execution: more natural and intuitive

- implicitly provides complexity measure (number of steps)

- but more difficult to deal with iteration, nondeterminism and 

refinement (requires notion of bisimulation in proofs) …
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Review of Semantic Approaches 
• Denotational semantics:


- encapsulated by UTP theories (“healthy” predicate sets);

- copes well with everything: iteration, recursion, non-determinism, 

refinement, and compositional development;

- but carries the heavy burden of a mathematical model with it.


• Algebraic semantics:

- especially useful for refactoring, refinement, code generation and 

optimization, as well as pattern-based design;

- may be incomplete and less tractable in axiomatic frameworks.


• Operational semantics:

- mimics abstract execution: more natural and intuitive

- implicitly provides complexity measure (number of steps)

- but more difficult to deal with iteration, nondeterminism and 

refinement (requires notion of bisimulation in proofs) …

We also have axiomatic 
semantics that translates 
postulates about programs 
into logical conjectures to 
be proved in a FOL/HOL.
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A Taste of UTP Models

• Relational programs:

- x := 42 ≝ x’ = 42 (constraining the after-state)


• Total-correctness “designs”:

- x := y ÷ z ≝ ok ∧ y ≠ 0  ⇒  ok’ ∧ z’ = (x div y)


• Reactive programs (ACP, CSP, Circus, etc.):

- c → skip ≝ 

R(tr’ = tr ∧ c ∉ ref’  wait’  tr’ = tr ⌃ c⟨⟩)

• NOTE: We only write the LHS. The RHS is typically 

hidden from the user and managed by the prover.
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hidden from the user and managed by the prover.
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UTP Theories
• UTP Theories are characterized by healthiness 

conditions (HC).

• Define a subset of the permissible predicates.

• Combinators of theories works via their HCs and 

alphabets.
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give a semantic model of 
AADL components …



© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda37

UTP Theories
• UTP Theories are characterized by healthiness 

conditions (HC).

• Define a subset of the permissible predicates.

• Combinators of theories works via their HCs and 

alphabets.

H1 H2

H3 H4
R1 R2

R3

Restrict Alphabet

All of these are useful to 
give a semantic model of 
AADL components …

The GUMBO/HAMR/Slang 
semantics is similar to UTP designs
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UTP vs AADL Refinement
• AADL’s use of refinement is a little different from UTP’s:

➡ component type C and its implementation I are 

encoded in the same architectural model M ≘ (C || I).

➡ … rather than being separate computations.


• Besides, there may be more than on implementation of a 
single component type C: M ≘ (C || I1 || I2 || ⋯ ).


• Hence, we trade the binary refinement relation:

C ⊑ I for a UTP healthiness conditions H⊑(M).


• Healthiness conditions form a layered hierarchy with 
successively stronger notions of refinement.

- Structural / topological refinement at the top.

- Behavioral refinement (core & annexes) below.
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Current State of our Work

• So far, we have focused on mechanizing the structural 
(declarative) model of AADL in Isabelle/HOL as a 
baseline for further work.


• Includes core entities, such as Components, Properties, 
Features, Ports, Connections, Flows, Implementations.


• Formalization of legality and consistency rules.

• Emphasis on traceability and hyperlinks to an abridged 

version of the SAE AADL standard (version C).

• Supports code generation into Scala (JVM-based).

• Preliminary work on also generating the instance model 

from the Ecore meta-model description of OSATE2.
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Current State of our Work

• So far, we have focused on mechanizing the structural 
(declarative) model of AADL in Isabelle/HOL as a 
baseline for further work.


• Includes core entities, such as Components, Properties, 
Features, Ports, Connections, Flows, Implementations.


• Formalization of legality and consistency rules.

• Emphasis on traceability and hyperlinks to an abridged 

version of the SAE AADL standard (version C).

• Supports code generation into Scala (JVM-based).

• Preliminary work on also generating the instance model 

from the Ecore meta-model description of OSATE2.

The choice of Isabelle is 
motivated by using the 
Isabelle/UTP framework for 
UTP mechanization parts.

https://isabelle-utp.york.ac.uk/
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Isabelle/HOL Theory Extract
• AADL component type and implementation encoding:
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Isabelle/HOL Theory Extract
• AADL component type and implementation encoding:

Records are by default 
extendible in Isabelle/HOL.

We use the extension type 
to add behavioral models!
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Code Generation Example
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Code Generation Example (cont’d)
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Use Case: Adding Formality to OSATE2
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Use Case: Adding Formality to OSATE2

Augmenting the workflow 
with formally verified tools.
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Caveats for Future Work
• Our mantra: “not to confine ourselves to a particular 

proof system, mechanization framework, or tool”.

- Considerable work that has already been done to 

formalize and mechanism the semantics of AADL 
in both Coq and Isabelle/HOL. (Jerome, KSU, etc.)


- Fundamentally, both are suitable target platforms 
and fulfill the needs, and so is PVS, Lean, etc …


- We opted for Isabelle/HOL solely since there 
already is an elaborate mechanization of UTP.


• Lean into existing formalization where a lot of work 
has already been accomplished (make meaningful 
additions rather than re-inventing the wheel …).
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From Ecore to Formal Models
• Generation of a suitable meta-model to target 

different theorem provers:
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Conclusion
• We have sketched a vision here that still needs to be 

validated through implementation and examples…

• A first step will be to integrate a notion of reactive 

computation (as reactive design contracts and/or 
interaction trees) with the structural model.


• The incremental strengthening of refinement via HC 
poses some new challenges to proof engineering.


• Among other things, we aim to enable AADL 
system engineering and verification of 
architectural patterns, in addition to code-level 
verification (existing tools such as HAMR/Slang 
already do a brilliant job of that).
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Addendum: Safety-Critical Java
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Addendum: Safety-Critical Java


