
ADEPT 2023 (Lisbon, Portugal)

Joe Kiniry and Frank Zeyda (Galois, U.S.)
16 June 2023

Formalizing AADL in the 
Unifying Theories of Programming

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda2

Overview

• Rigorous Digital Engineering

• Some Example RDE Projects

• Challenges for Semantic Integration

• A Brief Introduction to UTP

• Application of UTP to Formalizing AADL

• Current State of Work

• Future Outlook and Conclusion

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda3

RDE: The Big Picture
• At Galois we design, build, and assure high-assurance systems using a

development process and methodology we call Rigorous Digital
Engineering, or RDE for short.

• RDE enables software, hardware, and systems engineers to use formal
methods (FM) without really knowing they are doing FM—what we call
Secret Ninja Formal Methods (SNFM).

• Doing RDE with SNFM means precisely describing what a system is
meant to do by stating what properties it must have, and demonstrating
that the system conforms to that description—aka writing specifications
and performing (rigorous) validation and (formal) verification.

• But any complex system requires writing specifications in several
different specification languages—AADL among them—and these
specifications all inter-relate to each other, and thus at its core we have a
semantic integration challenge.

We hypothesize that Unified Theories of Programming (UTP)  
will help us practically and foundationally to solve  

this semantic integration challenge.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda4

Rigorous Digital Engineering
• Rigorous Digital Engineering (RDE) is all

about…

• the use of (preferably executable) models

(with preferably known fidelity) to

• rigorously, authentically describe things

• at various levels of abstraction

• such that the models relate to each other

• in well-understood ways

• and the models refine to bits or atoms

• and thus all of this connects to software,

hardware, and systems engineering

• and we use the models to provide

assurance of various kinds for the 
product line / product /platform / system

SHAVE
Secure CPU

Security
Architecture

Group

RISC-V
CPU

ARM
CPU

ISA Group
width: {32, 64}

Tagged
Scope Group

DRAM

Registers ICache

DCache

Tagged Architecture
size: ℕ Verified

Crypto HW
Group

AES SHA2

Symmetric
Cipher Group

keysize: ℕ
blocksize: ℕ

MD5

RNG
Group

Hash Group

blocksize: ℕ

Asymmetric
Cipher Group

keysize: ℕ
blocksize: ℕ

3DES

RSA

ElGamal

PRNG TRNG

RISC-V
Group

Z-
scale

Rocket BOOM

SHAVE Process
Systems Engineering Point-of-view

specify informal
system requirements

define an informal
domain model

formalize
domain model

specify static system
architecture

Systems Engineer

perform domain
engineering1 2 3 4

5

specify dynamic
system model

specify the behavior of
the system model

formalize informal
system requirements

as properties

reason about all formal
models to ensure that
they are fit for purpose

automatically generate
validation bench from

specifications

specify concrete
implementations that

refine models

implement “bottom”
behavior for all

implementations

manually implement validation
properties that cannot be
automatically generated

piecewise implement
specification

execute runtime
verification of test

benches

formally verify
implementations

against all models

reason about concrete
implementations to ensure
that they are fit for purpose

6

7

8

910

11

12

13

14

15a 15b

1616

crypto.acsl

crypto.cry

crypto.hcrypto.bon crypto.c

+ ⚫︎
SOFTWARE_ACSL

+ ⚫︎
SOFTWARE_BON

+ ⚫︎
SOFTWARE_C

+ ⚫︎
SOFTWARE_CRYPTOL

+ ⚫︎
SOFTWARE_REFINEMENT

+ ⚫︎
SOFTWARE_ASSURANCE_CASE

∗ ⚫︎
SPECIFICATION

∗ ⚫︎
IMPLEMENTATION

∗ ⚫︎
ASSURANCE_CASE

∗ ⚫︎
REFINEMENT

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda5

…with Applied Formal Methods
• applied formal methods is about the practical

application of formal methods to all stages of a
system’s life cycle:

➡ process, methodology, design, development,

assurance, maintenance, and evolution.

• hold no bias in choice of formal method, tool, or

technology—just choose the right tool for the job

• often focuses on finding key places where small

changes to the lifecycle have large impact

• and nearly always hides formalism from the typical

user a la Secret Ninja Formal Methods

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda6

The Technologies of RDE
The technology stacks supported thus far by the RDE methodology include:

• many different kinds of programming languages (procedural, object-

oriented, functional, hardware, logic, and mixed-model, such as C, C++,
C#, Rust, Haskell, Java, Scala, Kotlin, Eiffel, Chisel, Bluespec
SystemVerilog (BSV), System Verilog, VHDL)

• specification and modeling languages (such as F*, ACSL, JML,
CodeContracts, Alloy, Z, VDM, Event-B, RAISE)

• architecture specification tools and languages (such as Cameo, Rhapsody,
MagicDraw, OSATE, Visual Paradigm and UML, AADL, and SysML, resp.)

• integrated development environments (such as Eclipse, Visual Studio,
Visual Studio Code, and IntelliJ IDEA)

• formal modeling and reasoning tools (such as Alloy, PVS, Coq, Isabelle,
UPPAAL, CZT, Overture, Rodin, Frama-C, SAW, Ivy, TLA Toolbox, FDR4,
NuSMV, BLAST, and SPIN)

• operating systems (RTOSs, UNIX variants, seL4, etc.)

• spans systems, hardware (ASIC and FPGA-based), firmware, and software

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda7

Some Example RDE Projects
• For example, a couple of medium-sized systems created at

Galois with RDE over the past decade are the SHAVE and
HARDENS systems.

• SHAVE is a bump-in-wire encryption device that includes a

soft core CPU, measured boot, and cryptography in
hardware and firmware.

• HARDENS is an Instrumentation and Control (I&C) system
for a Reactor Trip System, providing a fault-tolerant
protection system for Nuclear Power Plants.

• SHAVE includes nearly a dozen specification and programming
languages (ACSL, Aoraï, ASM, BSV, C, Cryptol, EBON, LLVM,
PVS, SAW, and SV).

• HARDENS includes just over a dozen specification and
programming languages (AADL, SysML, ACSL, ASM, BSV, C,
Cryptol, FRET, Lando, LLVM, Lobot, SAW, and SV).

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda8

Challenges to Semantic Integration

• Relating all of these specifications and
implementations—semantically and practically—is
currently fully supported by the RDE process and
methodology, but only partly by automated tools.

• Our work using UTP via SNFM is meant to provide
a mathematical foundation to these relations. 

Our goal is full, invisible automated tooling for: 
model-model/model-code refinement checking, 

extraction of model/code refinements from models, 
lifting of abstractions from models and code.

This work is supported by Government grants from many agencies, including AFRL, ARL, DARPA, EC, NRC, NSA, SDA, SFI, and others.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda9

Anatomy of AADL Semantics

AADL Core
Language

Described in the
SAE AADL Standard
AS5506[A,B,C,D]

https://www.sae.org/standards/content/as5506

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda10

Anatomy of AADL Semantics

AADL Core
Language

Described in the
SAE AADL Standard
AS5506[A,B,C,D]

Core Structural
Semantics

https://www.sae.org/standards/content/as5506

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda11

Anatomy of AADL Semantics

AADL Core
Language

Described in the
SAE AADL Standard
AS5506[A,B,C,D]

Core Structural
Semantics

Core Behavioral
Semantics

https://www.sae.org/standards/content/as5506

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda

Extended Behavioral Semantics

AADL Annexes
(AGREE, GUMBO, BLESS, etc.)

12

Anatomy of AADL Semantics

AADL Core
Language

Described in the
SAE AADL Standard
AS5506[A,B,C,D]

Defined in auxiliary
documents & tools

Core Structural
Semantics

Core Behavioral
Semantics

https://www.sae.org/standards/content/as5506

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda

First issue of unification Extended Behavioral Semantics

AADL Annexes
(AGREE, GUMBO, BLESS, etc.)

13

Anatomy of AADL Semantics

AADL Core
Language

Described in the
SAE AADL Standard
AS5506[A,B,C,D]

Defined in auxiliary
documents & tools

Core Structural
Semantics

Core Behavioral
Semantics

https://www.sae.org/standards/content/as5506

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda14

Concerns for Subtheories
• Core Structural Semantics

- well-formedness of AADL models; i.e.,

- naming, legality and consistency rules

• Core Behavioral Semantics

- reactivity and communication

- timing and scheduling behavior

- guarantees made by a run-time framework

• Extended Behavioral Semantics

- inclusion of BISL and contract frameworks

- embedding of a refinement calculus with a guarded

command language for expressing implementations

- whatever formal model a particular annex requires …

?

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda15

A Vision for Semantic Integration

• Extensions of the AADL language (via annexes,
custom properties, and so on …) are mirrored by
an extensions to the (core) semantics.

• As syntactic entities and concepts are referenced
and reused, so are formalized semantic ones.

• Requires a certain degree of modularity and
compositionality of the semantic framework.

• Verification notions, such as refinement change
(become stronger) as we specialize the language.

• Question: How to mechanize all this in a theorem
prover in a plug-and-play fashion?

mirrored

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda16

A Word on Refinement
• Refinement is a formal (mathematical) relationship

between specification and their implementations.

- E.g., S ⊑ T logically means that T is a valid

implementation of specification S.

- This ought be a provable/falsifiable statement.

• The distinction between specifications and their
implementations is already present in AADL.

• Hence, AADL ought to lend itself well for integration
into refinement-centric reasoning techniques.

• Hoare’s Unifying Theories of Programming (UTP) 
is one such a technique (and more) …

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda17

UTP in a Nutshell
• Proposed in Tony Hoare and He Jifeng’s seminal

book “Unifying Theories of Programming” (1998).

• Presents a unified framework in which the

semantics of specification, design, modeling, and
programming languages of any kind and flavor can
be uniformly described.

• Inspired by scientific / engineering theories:

- theories describe “observable behaviors”

- consider Boyle’s law: PV = k (pressure multiplied

by volume equals to some constant k)

- UTP computations are in essence predicates

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda18

UTP in a Nutshell
• Proposed in Tony Hoare and He Jifeng’s seminal

book “Unifying Theories of Programming” (1998).

• Presents a unified framework in which the

semantics of specification, design, modeling, and
programming languages of any kind and flavor can
be uniformly defined.

• Inspired by scientific / engineering theories:

- theories describe “observable behaviors”

- consider Boyle’s law: PV = k (pressure multiplied

by volume equals to some constant k)

- UTP computations are in essence predicates

Think of observing the
interactions of an AADL
component through its
ports with an environment.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda19

Observable Qualities

• Observable qualities are defined by the alphabet of
a UTP predicate (𝛼P):

- they can be program variables …

- … or auxiliary variables of a computational

paradigm such as:

- ok : 𝔹, tr : seq(Event), ref : 𝓟(Event), and so on.

• In AADL, we, e.g., have a variable that records the
topological structure of a model.

- leaving suitable “gaps” for additional semantic

information in subtheories (extend alphabet) …

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda20

Observable Qualities

• Observable qualities are defined by the alphabet of
a UTP predicate (𝛼P):

- they can be program variables …

- … or auxiliary variables of a computational

paradigm such as:

- ok : 𝔹, tr : seq(Event), ref : 𝓟(Event), and so on.

• In AADL, we, e.g., have a variable that records the
topological structure of a model.

- leaving suitable “gaps” for additional semantic

information in subtheories (extend alphabet) …

A wealth of UTP theories
already exists for common
sequential, reactive and
hybrid prog. notations.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda21

UTP Semantic Triangle

Denotational
Semantics

Alphabetized relations

presented as
logic predicates

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda22

UTP Semantic Triangle

Denotational
Semantics

Alphabetized relations

Algebraic
Semantics

Derive / Verify

Equiv. & Refinement Laws

presented as
logic predicates

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda23

UTP Semantic Triangle

Denotational
Semantics

Alphabetized relations

Algebraic
Semantics

Derive / Verify

Equiv. & Refinement Laws

Operational
Semantics

Transition / step relation

Validate  
Soundness

presented as
logic predicates

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda24

UTP Semantic Triangle

Denotational
Semantics

Alphabetized relations

Algebraic
Semantics

Derive / Verify

Equiv. & Refinement Laws

Operational
Semantics

Transition / step relation

Validate  
Soundness

Derive / Verify
(e.g., via
bisimulation)

presented as
logic predicates

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda25

UTP Semantic Triangle

Denotational
Semantics

Alphabetized relations

Algebraic
Semantics

Derive / Verify

Equiv. & Refinement Laws

Operational
Semantics

Transition / step relation

Validate  
Soundness

Derive / Verify
(e.g., via
bisimulation)

presented as
logic predicates

Most useful basis for SNFM

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda

• Denotational semantics is considered the “gold standard”
and point of reference for other semantic presentations.

26

UTP Semantic Triangle

Denotational
Semantics

Alphabetized relations

Algebraic
Semantics

Derive / Verify

Equiv. & Refinement Laws

Operational
Semantics

Transition / step relation

Validate  
Soundness

Derive / Verify
(e.g., via
bisimulation)

presented as
logic predicates

Most useful basis for SNFM

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda

• Denotational semantics is considered the “gold standard”
and point of reference for other semantic presentations.

27

UTP Semantic Triangle

Denotational
Semantics

Alphabetized relations

Algebraic
Semantics

Derive / Verify

Equiv. & Refinement Laws

Operational
Semantics

Transition / step relation

Validate  
Soundness

Derive / Verify

Can be used to derive various
types of axiomatic semantics too,

e.g., Hoare-style program calculi.

(e.g., via
bisimulation)

presented as
logic predicates

Most useful basis for SNFM

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda28

Review of Semantic Approaches
• Denotational semantics:

- encapsulated by UTP theories (“healthy” predicate sets);

- copes well with everything: iteration, recursion, non-determinism,

refinement, and compositional development;

- but carries the heavy burden of a mathematical model with it.

• Algebraic semantics:

- especially useful for refactoring, refinement, code generation and

optimization, as well as pattern-based design;

- may be incomplete and less tractable in axiomatic frameworks.

• Operational semantics:

- mimics abstract execution: more natural and intuitive

- implicitly provides complexity measure (number of steps)

- but more difficult to deal with iteration, nondeterminism and

refinement (requires notion of bisimulation in proofs) …

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda29

Review of Semantic Approaches
• Denotational semantics:

- encapsulated by UTP theories (“healthy” predicate sets);

- copes well with everything: iteration, recursion, non-determinism,

refinement, and compositional development;

- but carries the heavy burden of a mathematical model with it.

• Algebraic semantics:

- especially useful for refactoring, refinement, code generation and

optimization, as well as pattern-based design;

- may be incomplete and less tractable in axiomatic frameworks.

• Operational semantics:

- mimics abstract execution: more natural and intuitive

- implicitly provides complexity measure (number of steps)

- but more difficult to deal with iteration, nondeterminism and

refinement (requires notion of bisimulation in proofs) …

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda30

Review of Semantic Approaches
• Denotational semantics:

- encapsulated by UTP theories (“healthy” predicate sets);

- copes well with everything: iteration, recursion, non-determinism,

refinement, and compositional development;

- but carries the heavy burden of a mathematical model with it.

• Algebraic semantics:

- especially useful for refactoring, refinement, code generation and

optimization, as well as pattern-based design;

- may be incomplete and less tractable in axiomatic frameworks.

• Operational semantics:

- mimics abstract execution: more natural and intuitive

- implicitly provides complexity measure (number of steps)

- but more difficult to deal with iteration, nondeterminism and

refinement (requires notion of bisimulation in proofs) …

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda31

Review of Semantic Approaches
• Denotational semantics:

- encapsulated by UTP theories (“healthy” predicate sets);

- copes well with everything: iteration, recursion, non-determinism,

refinement, and compositional development;

- but carries the heavy burden of a mathematical model with it.

• Algebraic semantics:

- especially useful for refactoring, refinement, code generation and

optimization, as well as pattern-based design;

- may be incomplete and less tractable in axiomatic frameworks.

• Operational semantics:

- mimics abstract execution: more natural and intuitive

- implicitly provides complexity measure (number of steps)

- but more difficult to deal with iteration, nondeterminism and

refinement (requires notion of bisimulation in proofs) …

We also have axiomatic
semantics that translates
postulates about programs
into logical conjectures to
be proved in a FOL/HOL.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda32

A Taste of UTP Models

• Relational programs:

- x := 42 ≝ x’ = 42 (constraining the after-state)

• Total-correctness “designs”:

- x := y ÷ z ≝ ok ∧ y ≠ 0 ⇒ ok’ ∧ z’ = (x div y)

• Reactive programs (ACP, CSP, Circus, etc.):

- c → skip ≝ 

R(tr’ = tr ∧ c ∉ ref’ wait’ tr’ = tr ⌃ c⟨⟩)

• NOTE: We only write the LHS. The RHS is typically

hidden from the user and managed by the prover.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda33

A Taste of UTP Models

• Relational programs:

- x := 42 ≝ x’ = 42 (constraining the after-state)

• Total-correctness “designs”:

- x := y ÷ z ≝ ok ∧ y ≠ 0 ⇒ ok’ ∧ z’ = (x div y)

• Reactive programs (ACP, CSP, Circus, etc.):

- c → skip ≝ 

R(tr’ = tr ∧ c ∉ ref’ wait’ tr’ = tr ⌃ ⟨c⟩)

• NOTE: We only write the LHS. The RHS is typically

hidden from the user and managed by the prover.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda34

UTP Theories
• UTP Theories are characterized by healthiness

conditions (HC).

• Define a subset of the permissible predicates.

• Combinators of theories works via their HCs and

alphabets.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda35

UTP Theories
• UTP Theories are characterized by healthiness

conditions (HC).

• Define a subset of the permissible predicates.

• Combinators of theories works via their HCs and

alphabets.

H1 H2

H3 H4
R1 R2

R3

Restrict Alphabet

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda36

UTP Theories
• UTP Theories are characterized by healthiness

conditions (HC).

• Define a subset of the permissible predicates.

• Combinators of theories works via their HCs and

alphabets.

H1 H2

H3 H4
R1 R2

R3

Restrict Alphabet

All of these are useful to
give a semantic model of
AADL components …

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda37

UTP Theories
• UTP Theories are characterized by healthiness

conditions (HC).

• Define a subset of the permissible predicates.

• Combinators of theories works via their HCs and

alphabets.

H1 H2

H3 H4
R1 R2

R3

Restrict Alphabet

All of these are useful to
give a semantic model of
AADL components …

The GUMBO/HAMR/Slang
semantics is similar to UTP designs

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda38

UTP vs AADL Refinement
• AADL’s use of refinement is a little different from UTP’s:

➡ component type C and its implementation I are

encoded in the same architectural model M ≘ (C || I).

➡ … rather than being separate computations.

• Besides, there may be more than on implementation of a
single component type C: M ≘ (C || I1 || I2 || ⋯).

• Hence, we trade the binary refinement relation:

C ⊑ I for a UTP healthiness conditions H⊑(M).

• Healthiness conditions form a layered hierarchy with
successively stronger notions of refinement.

- Structural / topological refinement at the top.

- Behavioral refinement (core & annexes) below.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda39

Current State of our Work

• So far, we have focused on mechanizing the structural
(declarative) model of AADL in Isabelle/HOL as a
baseline for further work.

• Includes core entities, such as Components, Properties,
Features, Ports, Connections, Flows, Implementations.

• Formalization of legality and consistency rules.

• Emphasis on traceability and hyperlinks to an abridged

version of the SAE AADL standard (version C).

• Supports code generation into Scala (JVM-based).

• Preliminary work on also generating the instance model

from the Ecore meta-model description of OSATE2.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda40

Current State of our Work

• So far, we have focused on mechanizing the structural
(declarative) model of AADL in Isabelle/HOL as a
baseline for further work.

• Includes core entities, such as Components, Properties,
Features, Ports, Connections, Flows, Implementations.

• Formalization of legality and consistency rules.

• Emphasis on traceability and hyperlinks to an abridged

version of the SAE AADL standard (version C).

• Supports code generation into Scala (JVM-based).

• Preliminary work on also generating the instance model

from the Ecore meta-model description of OSATE2.

The choice of Isabelle is
motivated by using the
Isabelle/UTP framework for
UTP mechanization parts.

https://isabelle-utp.york.ac.uk/

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda41

Isabelle/HOL Theory Extract
• AADL component type and implementation encoding:

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda42

Isabelle/HOL Theory Extract
• AADL component type and implementation encoding:

Records are by default
extendible in Isabelle/HOL.

We use the extension type
to add behavioral models!

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda43

Code Generation Example

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda44

Code Generation Example (cont’d)

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda45

Use Case: Adding Formality to OSATE2

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda46

Use Case: Adding Formality to OSATE2

Augmenting the workflow
with formally verified tools.

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda47

Caveats for Future Work
• Our mantra: “not to confine ourselves to a particular

proof system, mechanization framework, or tool”.

- Considerable work that has already been done to

formalize and mechanism the semantics of AADL
in both Coq and Isabelle/HOL. (Jerome, KSU, etc.)

- Fundamentally, both are suitable target platforms
and fulfill the needs, and so is PVS, Lean, etc …

- We opted for Isabelle/HOL solely since there
already is an elaborate mechanization of UTP.

• Lean into existing formalization where a lot of work
has already been accomplished (make meaningful
additions rather than re-inventing the wheel …).

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda48

From Ecore to Formal Models
• Generation of a suitable meta-model to target

different theorem provers:

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda49

Conclusion
• We have sketched a vision here that still needs to be

validated through implementation and examples…

• A first step will be to integrate a notion of reactive

computation (as reactive design contracts and/or
interaction trees) with the structural model.

• The incremental strengthening of refinement via HC
poses some new challenges to proof engineering.

• Among other things, we aim to enable AADL 
system engineering and verification of
architectural patterns, in addition to code-level
verification (existing tools such as HAMR/Slang
already do a brilliant job of that).

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda50

Addendum: Safety-Critical Java

© 2018 Galois, Inc.‹#› © 2023 Galois and Joseph Kiniry and Frank Zeyda51

Addendum: Safety-Critical Java

