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RDE: The Big Picture

e At Galois we design, build, and assure high-assurance systems using a
development process and methodology we call Rigorous Digital

Engineering, or RDE for short.

* RDE enables software, hardware, and systems engineers to use formal
methods (FM) without really knowing they are doing FM—what we call

Secret Ninja Formal Methods (SNFM).

* Doing RDE with SNFM means precisely describing what a system is
meant to do by stating what properties it must have, and demonstrating
that the system conforms to that description—aka writing specifications
and performing (rigorous) validation and (formal) verification.

e But any complex system requires writing specifications in several
different specification languages—AADL among them—and these
specifications all inter-relate to each other, and thus at its core we have a
semantic integration challenge.

We hypothesize that Unified Theories of Programming (UTP)
will help us practically and foundationally to solve
this semantic integration challenge.
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Rigorous Digital Engineering

* Rigorous Digital Engineering (RDE) is all
about...

the use of (preferably executable) models

(with

preferably known fidelity) to

rigorously, authentically describe things
at various levels of abstraction

such
In we
and t

that the models relate to each other
l-understood ways
ne models refine to bits or atoms

and t

nus all of this connects to software,

hardware, and systems engineering

and we use the models to provide
assurance of various kinds for the
product line / product /platform / system
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...with Applied Formal Methods

e applied formal methods is about the practical
application of formal methods to all stages of a
system’s life cycle:

= process, methodology, design, development,
assurance, maintenance, and evolution.

e hold no bias in choice of formal method, tool, or
technology —just choose the right tool for the job

e often focuses on finding key places where small
changes to the lifecycle have large impact

 and nearly always hides formalism from the typical
user a la Secret Ninja Formal Methods
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The Technologies of RDE

The technology stacks supported thus far by the RDE methodology include:

- many different kinds of programming languages (procedural, object-
oriented, functional, hardware, logic, and mixed-model, such as C, C++,
C#, Rust, Haskell, Java, Scala, Kotlin, Eiffel, Chisel, Bluespec
SystemVerilog (BSV), System Verilog, VHDL)

- specification and modeling languages (such as F*, ACSL, JML,
CodeContracts, Alloy, Z, VDM, Event-B, RAISE)

- architecture specification tools and languages (such as Cameo, Rhapsody,
MagicDraw, OSATE, Visual Paradigm and UML, AADL, and SysML, resp.)

- integrated development environments (such as Eclipse, Visual Studio,
Visual Studio Code, and Intellid IDEA)

- formal modeling and reasoning tools (such as Alloy, PVS, Coq, Isabelle,
UPPAAL, CZT, Overture, Rodin, Frama-C, SAW, lvy, TLA Toolbox, FDRA4,
NuSMV, BLAST, and SPIN)

- operating systems (RTOSs, UNIX variants, selL4, etc.)
 spans systems, hardware (ASIC and FPGA-based), firmware, and software
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Some Example RDE Projects

 For example, a couple of medium-sized systems created at

Galois with RDE over the past decade are the SHAVE and
HARDENS systems.

e SHAVE is a bump-in-wire encryption device that includes a
soft core CPU, measured boot, and cryptography in
hardware and firmware.

e HARDENS is an Instrumentation and Control (I&C) system
for a Reactor Trip System, providing a fault-tolerant
protection system for Nuclear Power Plants.

e SHAVE includes nearly a dozen specification and programming
anguages (ACSL, Aorai, ASM, BSV, C, Cryptol, EBON, LLVIM,
2VS, SAW, and SV).

e HARDENS includes just over a dozen specification and
programming languages (AADL, SysML, ACSL, ASM, BSY, C,
Cryptol, FRET, Lando, LLVM, Lobot, SAW, and SV).
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Challenges to Semantic Integration

e Relating all of these specifications and
iImplementations—semantically and practically—is
currently fully supported by the RDE process and
methodology, but only partly by automated tools.

 Our work using UTP via is meant to provide
a mathematical foundation to these relations.

Our goal is full, invisible automated tooling for:
model-model/model-code refinement checking,
extraction of model/code refinements from models,
lifting of abstractions from models and code.

This work is supported by Government grants from many agencies, including AFRL, ARL, DARPA, EC, NRC, NSA, SDA, SFI, and others.
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Anatomy of AADL Semantics

AADL Core Described in the
Language ~ " SAE AADL Standard
AS5506[A,B,C,D]
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https://www.sae.org/standards/content/as5506

Anatomy of AADL Semantics

AADL Core Described in the
Language " SAE AADL Standard
l AS5506[A,B,C,D]

Core Structural
Semantics
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Anatomy of AADL Semantics

AADL Core Described in the
Language " SAE AADL Standard
l .......... AS5506[A,B,C,D]
Core Structural Core Behavioral

Semantics Semantics
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Anatomy of AADL Semantics

AADL Annexes

(AGREE, GUMBO, BLESS, etc.)

AADL Core
Language

.
.
.
.
.
‘e
.

Defined in auxiliary
——documents & tools

Described in the
SAE AADL Standard
AS5506[A,B,C,D]

Core Structural
Semantics

.
.
.
.
.
N
Y
.

Core Behavioral
Semantics

Extended Behavioral Semantics
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Anatomy of AADL Semantics

AADL Annexes Defined in auxiliary
(AGREE, GUMBO, BLESS, etc.) ‘/documem‘s & tools
AADL Core Described in the
Language SAE AADL Standard
....... AS5506[A,B,C,D]

*e
a
Y
.

| Core Structural Core Behavioral
Semantics Semantics

Extended Behavioral Semantics

First issue of unification
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Concerns for Subtheories

e Core Structural Semantics
- well-formedness of AADL models; I.e.,

- naming, legality and consistency rules
 Core Behavioral Semantics

e Extended Behavioral Semantics
- inclusion of BISL and contract frameworks

- embedding of a refinement calculus with a guarded
command language for expressing implementations

- whatever formal model a particular annex requires ...
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A Vision for Semantic Integration

e Extensions of the AADL language (via annexes,
custom properties, and so on ...) are mirrored by
an extensions to the (core) semantics.

e As syntactic entities and concepts are referenced
and reused, so are formalized semantic ones.

* Requires a certain degree of modularity and
compositionality of the semantic framework.

e \erification notions, such as refinement
(become stronger) as we specialize the language.

e Question: How to mechanize all this in a theorem
prover in a plug-and-play fashion?

© 2023 Galois and Joseph Kiniry and Frank Zeyda



A Word on Refinement

* Refinement is a formal (mathematical) relationship
between specification and their implementations.

- E.g., S C T logically means that T is a valid
implementation of specification S.

- This ought be a provable/falsifiable statement.

* The distinction between specifications and their
implementations is already present in AADL.

* Hence, AADL ought to lend itself well for integration
into refinement-centric reasoning techniques.

* Hoare’s Unifying Theories of Programming (UTP)
IS one such a technigue (and more) ...
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UTP in a Nutshell

* Proposed in Tony Hoare and He Jifeng’s seminal
book “Unifying Theories of Programming” (1998).

e Presents a unified framework in which the
semantics of specification, design, modeling, and
programming languages of any kind and flavor can
be uniformly described.

* |nspired by scientific / engineering theories:
- theories describe “observable behaviors”

- consider Boyle’s law: PV = k (pressure multiplied
by volume equals to some constant k)

- UTP computations are in essence predicates
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UTP in a Nutshell

* Proposed in Tony Hoare and He Jifeng’s seminal

book “Unil® , " (1998).
Think of observing the e
|

’ Present.s c interactions of an AADL .
semantics leling, and

orogramm component through its § flavor can
be uniforrrLPOT'fS with an environment. y

* |[nspired by scientific / engineering theories:
- theories describe|“observable behaviors”|

- consider Boyle’s law: PV = k (pressure multiplied
by volume equals to some constant k)

- UTP computations are in essence predicates
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Observable Qualities

 Observable qualities are defined by the alphabet of

a UTP predicate (aP):
- they can be program variables ... =}
- ... or auxiliary variables of a computational

paradigm such as:
- ok : B, tr : seqg(Event), ref : P(Event), and so on.

 In AADL, we, e.g., have a variable that records the
topological structure of a model.

- leaving suitable “gaps” for additional semantic
information in subtheories (extend alphabet) ...
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Observable Qualities

 Observable qualities are defined by the alphabet of

a UTP predicate («P): ‘ﬁ
- they Ca'rA wealth of UTP theories

- ... Or au glready exists for common itional
paradig sequential, reactive and
- ok : B, hybrid prog. notations. and 50 on.

 In AADL, we, e.qg., have a variable that recofds the
topological structure of a model.

- leaving suitable “gaps” for|additional|semantic
information in subtheories (extend alphabet) ...
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UTP Semantic Triangle

presented as

Denotational logic predicates
Semantics
Alphabetized relations
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UTP Semantic Triangle

presented as

Denotational logic predicates
Semantics
Alphabetized relations

Derive / Verify

Algebraic
Semantics

Equiv. & Refinement Laws
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UTP Semantic Triangle

presented as

Denotational logic predicates
Semantics
_ _ Alphabetized relations Validate
Derive / Verify Soundness
Algebraic Operational
Semantics Semantics
Equiv. & Refinement Laws Transition / step relation
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UTP Semantic Triangle

presented as

Denotational logic predicates
Semantics
Alphabetized relations Validate
Derive / Verify Soundness
Algebraic Derive / Verify Operational
. B —— .
Semantics (e.g., via Semantics
Equiv. & Refinement Laws bisimulation) Transition / step relation
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UTP Semantic Triangle

presented as

Denotational logic predicates
Semantics
Alphabetized relations Validate
Derive / Verify Soundness
Algebraic Derive / Verify Operational
. B —— .
Semantics (e.g., via Semantics
Equiv. & Refinement Laws bisimulation) Transition / step relation

Most useful basis for SNFM
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UTP Semantic Triangle

presented as

Denotational logic predicates
Semantics
Alphabetized relations

Validate
Soundness

Derive / Verify

Algebraic Derive / Verify Operational
) —] :
Semantics (e.g., via Semantics
Equiv. & Refinement Laws bisimulation) Transition / step relation

Most useful basis for SNFM
» Denotational semantics is considered the “gold standard”
and point of reference for other semantic presentations.
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UTP Semantic Triangle

presented as

Denotational logic predicates
Semantics
Alphabetized relations

Validate
Soundness

Derive / Verify

Can be used to derive various
types of axiomatic semantics too, |
e.g., Hoare-style program calculi.
Algebraw— o woives ey cq%rational

Semantics (e.g., via Semantics
Equiv. & Refinement Laws bisimulation) Transition / step relation

Most useful basis for SNFM
» Denotational semantics is considered the “gold standard”
and point of reference for other semantic presentations.
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Review of Semantic Approaches

e Denotational semantics:

- encapsulated by UTP theories (“healthy” predicate sets);

- copes well with everything: iteration, recursion, non-determinism,
refinement, and compositional development;

- but carries the heavy burden of a mathematical model with it.
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Review of Semantic Approaches

e Denotational semantics:

- encapsulated by UTP theories (“healthy” predicate sets);

- copes well with everything: iteration, recursion, non-determinism,
refinement, and compositional development;

- but carries the heavy burden of a mathematical model with it.
* Algebraic semantics:

- especially useful for refactoring, refinement, code generation and
optimization, as well as pattern-based design;

- may be incomplete and less tractable in axiomatic frameworks.
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Review of Semantic Approaches

e Denotational semantics:

- encapsulated by UTP theories (“healthy” predicate sets);

- copes well with everything: iteration, recursion, non-determinism,
refinement, and compositional development;

- but carries the heavy burden of a mathematical model with it.
* Algebraic semantics:

- especially useful for refactoring, refinement, code generation and
optimization, as well as pattern-based design;

- may be incomplete and less tractable in axiomatic frameworks.
e Operational semantics:
- mimics abstract execution: more natural and intuitive

- implicitly provides complexity measure (number of steps)

- but more difficult to deal with iteration, nondeterminism and
refinement (requires notion of bisimulation in proofs) ...
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Review of Semantic Approaches

e Denotational semantics:

- encapsulated by UTP theories (“healthy” predicate sets);

- copes wellggith avervthina: iteration mmlrginwon-determinism,

refinemen . .
We also have axiomatic

- but carries . model with it.
. semantics that translates
* Algebraic sel

- especially | Postulates about programs |o jeneration and
optimizatic jnto logical conjectures to
- may be inc be proved in a FOL/HOL. tic frameworks.

 Operational L o —— J

- mimics abstract execution: more natural and intuitive
- implicitly provides complexity measure (number of steps)

- but more difficult to deal with iteration, nondeterminism and
refinement (requires notion of bisimulation in proofs) ...
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A Taste of UTP Models

* Relational programs:
- X :=42 £ x’ = 42 (constraining the after-state)
e Jotal-correctness “designs”:
-X=y+z20kAayz0 = okl AZ =(xdivy)

 Reactive programs (ACP, CSP, Circus, etc.):

- C = skip =
R(r' =1tr A ¢ ¢ ref” < wait’ > tr' = tr ~ ¢
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A Taste of UTP Models

Relational programs:

- X =42 £ X’ = 42 (constraining the after-state)
Total-correctness “designs”:
-X=y+z20kAayz0 = ok’ AZ =(xdivy)

Reactive programs (ACP, CSP, Circus, etc.):
- C — skip «
R(r =tr Ac gref <wait’ B ir’ = ir © {c))

NOTE: We only write the LHS. The RHS is typically
hidden from the user and managed by the prover.
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UTP Theories

* UTP Theories are characterized by healthiness
conditions (HC).

* Define a subset of the permissible predicates.

e Combinators of theories works via their HCs and
alphabets.
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UTP Theories

* UTP Theories are characterized by healthiness
conditions (HC).

* Define a subset of the permissible predicates.

e Combinators of theories works via their HCs and
alphabets.

Restrict Alphabet

© 2023 Galois and Joseph Kiniry and Frank Zeyda



UTP Theories

e UTP Theories are charad - -
conditions (HC). All of these are useful to

e Define a subset of the pe give a semantic model of
AADL components ..

* Combinators of theoriesf,
alphabets.

<

Restrict Alphabet
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UTP Theories

e UTP Theories are charad - -
conditions (HC). All of these are useful to

e Define a subset of the pe give a semantic model of
AADL components ...

* Combinators of theoriesp,
alphabets.

<

Restrict Alphabet

The GUMBO/HAMR/Slang
semantics is similar to UTP designs
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UTP vs AADL Refinement

AADL’s use of refinement is a little different from UTP’s:

= component type C and its implementation | are
encoded in the same architectural model M = (C || I).

= .. rather than being separate computations.

Besides, there may be more than on implementation of a
single component type C: M = (C|[ 1 || I2 || -**).

Hence, we trade the binary refinement relation:
C C | for a UTP healthiness conditions Hc(M).

Healthiness conditions form a layered hierarchy with
successively stronger notions of refinement.

- Structural / topological refinement at the top.
- Behavioral refinement (core & annexes) below.

38
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Current State of our Work

e So far, we have focused on mechanizing the structural
(declarative) model of AADL in Isabelle/HOL as a
baseline for further work.

* |ncludes core entities, such as Components, Properties,
Features, Ports, Connections, Flows, Implementations.

* Formalization of legality and consistency rules.

* Emphasis on traceability and hyperlinks to an abridged
version of the SAE AADL standard (version C).

e Supports code generation into Scala (JVM-based).

* Preliminary work on also generating the instance model
from the Ecore meta-model description of OSATEZ2.
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Current State of our Work

e So far, we have focused on mechanizing the structural
(declarative) model of AADL in|lsabelle/HOL |as a

baseline for further work. f
e |ncludes cc" : : 1 Properties,
Features, F The. choice of Is.abelle iS entations.
e Formalizati MeTivated by using the ules.
+ Emphasis Isabelle/UTP framework for n abridged

e Supports code generation into Scala (JVM-based).

* Preliminary work on also generating the instance model
from the Ecore meta-model description of OSATEZ2.
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Isabelle/HOL Theory Extract

e AADL component type and implementation encoding:

subsection <Component Types>

record component type =

name “classifier"”

category "component category”
properties :: "property — property value"
features “name — feature"

subsection <Implementations>

record implementation =

name "classifier"”

category "component category”
subcomponents :: "name — classifier”
properties "property — property value"
connections “name — connection”

datatype component category =
system
| abstract
| software "software category"

| hardware "hardware_category"

datatype software category =
process

thread

thread group

subprogram

subprogram group

data
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Isabelle/HOL Theory Extract

e AADL component type and implementation encoding:

subsection <Component Types> Records are by default 1
record component type = extendible in Isabelle/l—lOL.
name :: "classifier"” .
category :: "component category" We use the extension fype
roperties :: "property — property value" .
?ea“zures . "ﬁamg _\yfeatEreE y_ 1'0 add behGV|oral mOdQIS! J

subsection <Implementations>

dafatype software category =
record implementation = process
name :: "classifier” thread
category :: "component category” thread group
subcomponents :: "name — classifier"” subprogram
properties :: "property — property value” subprogram group
connections :: "name — connection” data
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Code Generation Example

Example for record types component_type and
irT1[)|€BrT1€3r1tEiti()r1Z abstract sealed class component_type ext[A]

final case class component_type exta[A](
a: classifier ext[Unit],
b: component category,
c: Map[(property ext[Unit]), property value],
d: Map[String, (feature ext[Unit])], e: A)
extends component type ext[A]

abstract sealed class implementation _ext[A]
final case class implementation_exta[A](

: classifier ext[Unit],

: component category,

: Map[String, (classifier ext[Unit])],

: Map[(property ext[Unit]), property value],
: Map[String, connection],

: A)

extends implementation ext[A]

- QN T
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Code Generation Example (cont’d)

Translation of the earlier legality rule (wf_port):

def wf port(m: aadl model ext[Unit],
c: component type ext[Unit],
p: port spec ext[Unit]): Boolean =
((((((((Set.empty[component category] +

(hardware(device()))) +
(hardware(virtual processor()))) +
(hardware(processor()))) +
(software(thread group()))) +
(software(thread()))) +
(software(process()))) +
(abstracta())) +
(system())) contains (category[Unit](c))
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Use Case: Adding Formality to OSATE2

Purpose of Isabelle Encoding:

» Formal encoding of the AADL standard
* Ensure Well-formed AADL AST

» Correct-By-Construction Instance Model

i

Legend

Solid line: Handwritten

Dashed line: Generated

Declarative Instance =
Model Unfold Model
A ’ > A
& &
...... . EEME AR DT AT Lo
et | Tl owwsea
,Y ----- » :
BN B
21l
OSATE
Declarative AST Flatten Model Instance
AADL Model Unfold Generate XML > Model

B
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Use Case: Adding Formality to OSATE2

Purpose of Isabelle Encoding:
» Formal encoding of the AADL standard Augmenfing ‘l'he workflow
+ Ensure Well-formed AADL AST
« Correct-By-Construction Instance Model H ‘L
. s | with formally verified tools.
Declarative Instance =
Model Unfold Model Legend
K v > A
e@ ; -{@ Solid line: Handwritten
: ; Dashed line: Generated
...... [ amm : mmm -
| Declarative ! : ! Flatten
i Model v | mom (T ervREAN
oy et Dl » :
Map i & T°CITIT 0300 44ttd 44 L Popoogepgegeps '
2l
\ OSATE
Declarative AST Flatten Model Instance
G te XML
AADL Model |  Xtext . Unfold . el  Model
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Caveats for Future Work

e Our mantra: “not to confine ourselves to a particular
proof system, mechanization framework, or tool”.

- Considerable work that has already been done to
formalize and mechanism the semantics of AADL
in both Coq and Isabelle/HOL. (Jerome, KSU, etc.)

- Fundamentally, both are suitable target platforms
and fulfill the needs, and so is PVS, Lean, etc ...

- We opted for Isabelle/HOL solely since there
already is an elaborate mechanization of UTP.

* | ean into existing formalization where a lot of work
has already been accomplished (make meaningful
additions rather than re-inventing the wheel ...).
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From Ecore to Formal Models

* Generation of a suitable meta-model to target
different theorem provers:

EPackage

EClassifier

name: String

eSuperTypes

nsURI: Strin eClassifiers

~—{ name:String

——

EClass

EDatatype

eReferenceType

abstract: boolean

« | eStructuralFeatures

eAttributeType

EStructuralFeature

name: String
lowerBound: int

uggerBound: int

EReference

eOpposite

containment: boolean

eOpposite I 0..1

0.1

EAttribute

Metamodel

Standard Datatypes
Enums
Record Types
Mutually Recursive Type

The meta-model is our starting point for model generation.
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Conclusion

* \WWe have sketched a vision here that still needs to be
validated through implementation and examples...

e A first step will be to integrate a notion of reactive
computation (as reactive design contracts and/or
interaction trees) with the structural model.

* The incremental strengthening of refinement via HC
poses some new challenges to proof engineering.

e Among other things, we aim to enable AADL
system engineering and verification of
architectural patterns, in addition to code-level
verification (existing tools such as HAMR/Slang
already do a brilliant job of that).
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Addendum: Safety-Critical Java
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