Formal Model Engineering of Synchronous CPS Designs in AADL

Kyungmin Bae¹ Peter Csaba Ölveczky²

¹Pohang University of Science and Technology (POSTECH), Korea ²University of Oslo, Norway

2nd ADEPT workshop: AADL by its practitioners June 16, 2023

• Distributed controllers that interact with (physical) environments

• Many safety-critical applications

• Distributed controllers that interact with (physical) environments

• Many safety-critical applications

http://www.cvel.clemson.edu/auto/systems/auto-systems.html

• Distributed controllers that interact with (physical) environments

• Many safety-critical applications

http://articles.sae.org/10234/

• Distributed controllers that interact with (physical) environments

• Many safety-critical applications

https://web-material3.yokogawa.com/image_8434.jpg

- General models for many deployment scenarios
- Efficient formal analysis of such general models
- Safe deployment of the analyzed models

• Synchronous behavior & distributed realization: avionics, automotive, ...

- Have be correct in many distributed settings
 - time synchronization (IEEE 1588, etc.), bounded network delays, ...

• Hard to design

• Hard to design: network delays, execution times, clock skews, race conditions, ...

• Hard to design: network delays, execution times, clock skews, race conditions, ...

- Hard to verify
 - (discrete) state space explosion due to asynchrony (+ continuous dynamics)

• Hard to design: network delays, execution times, clock skews, race conditions, ...

- Hard to verify
 - (discrete) state space explosion due to asynchrony (+ continuous dynamics)
- Hard to deploy correctly
 - small changes can cause bugs if only verified for specific deployment scenario

Example: Which Cabinet is Active?

• \geq 30 hours to model-check, (for specific network delays, execution times, ...)

Goal

Enable automated formal analysis for domain-specific modeling of virtually synchronous CPSs

- An easy-to-use modeling language for CPS developers
- A tool integrated with mature modeling environments
- A technique to reduce the design and verification complexity

- 1. Model synchronous design SD in the HybridSynchAADL modeling language
- 2. Verify SD using the HybridSynchAADL OSATE plugin
- 3. Obtain the corresponding asynchronous model using the Hybrid PALS synchronizer

Modeling Language

- Goal
 - to abstractly capture many deployment scenarios
 - to model advanced control programs and continuous behaviors in AADL
- Design choice
 - use subset of AADL
 - leverage existing AADL constructs as much as possible

- Model synchronous designs with continuous dynamics
 - distributed controllers, continuous environments, sampling/actuation times, ...

- Model synchronous designs with continuous dynamics
 - distributed controllers, continuous environments, sampling/actuation times, ...
- Distributed controllers
 - in a subset of AADL: constructs have the same meaning as in AADL

- Model synchronous designs with continuous dynamics
 - distributed controllers, continuous environments, sampling/actuation times, ...
- Distributed controllers
 - in a subset of AADL: constructs have the same meaning as in AADL
- Continuous environments
 - continuous dynamics specified using continuous real functions or ODEs

The HybridSynchAADL Modeling Language (2)

• Extended with new AADL property set Hybrid_SynchAADL

```
property set Hybrid_SynchAADL is
Synchronous: inherit aadlboolean applies to (system);
isEnvironment: inherit aadlboolean applies to (system);
ContinuousDynamics: aadlstring applies to (system);
Max_Clock_Deviation: inherit Time applies to (system);
Sampling_Time: inherit Time_Range applies to (system);
Response_Time: inherit Time_Range applies to (system);
end Hybrid_SynchAADL;
```

• Minimize new syntactic extensions for ease of use by existing AADL users

Formal Semantics

- Formal semantics of HybridSynchAADL in Maude and SMT
 - Maude : a language and tool for specifying and analyzing distributed systems

- Formal semantics of HybridSynchAADL in Maude and SMT
 - Maude : a language and tool for specifying and analyzing distributed systems
- Discrete behaviors are specified in Maude
 - thread behaviors, behavior annex programs, synchronous communication, ...

- Formal semantics of HybridSynchAADL in Maude and SMT
 - Maude : a language and tool for specifying and analyzing distributed systems
- Discrete behaviors are specified in Maude
 - thread behaviors, behavior annex programs, synchronous communication, ...
- Continuous behaviors are encoded in SMT
 - continuous dynamics, sampling/actuation times, clock skews, ...

- Randomized simulation
 - randomly "samples" clock skews, sampling/actuation times, initial values, ...

- Randomized simulation
 - randomly "samples" clock skews, sampling/actuation times, initial values, ...
- Symbolic reachability analysis
 - all possible continuous behaviors are encoded in SMT

- Randomized simulation
 - randomly "samples" clock skews, sampling/actuation times, initial values, ...
- Symbolic reachability analysis
 - all possible continuous behaviors are encoded in SMT
- Portfolio analysis
 - execute randomized simulation and symbolic reachability analysis in parallel

- Compare the performance of HybridSynchAADL's symbolic reachability analysis
 - with hybrid automata reachability analysis tools: HyComp, SpaceEx, Flow*, dReach

- Compare the performance of HybridSynchAADL's symbolic reachability analysis
 - with hybrid automata reachability analysis tools: HyComp, SpaceEx, Flow*, dReach
- Analysis invariant properties of synchronous designs up to bounds
 - two properties: Inv_{\perp} (which holds), and Inv_{\perp} (which does not hold)

			$Inv_{ op}$							Inv_{\perp}					
	Model	Tool	N =	2	N =	3	N =	4	N =	= 2	N =	3	N =	4	
			Time	В	Time	В	Time	В	Time	В	Time	В	Time	B	
		HSADDL	2.0	5	3.9	5	5.8	5	2.4	3	4.2	3	5.9	3	
	e) I	HyComp	0.8	5	4.0	5	17.2	5	8.9	3	11.5	3	192.6	3	
	enc	SpaceEx	8.0	5	2230.3	3	4.5	1	5.1	3	2676.6	3	Т/О	-	
	R (si	dReach	1382.7	3	107.1	1	Т/О	-	Т/О	-	Т/О	-	Т/О	-	
		Flow*	3552.8	4	2725.5	2	1205.2	1	167.3	3	380.4	2	838.0	3	
		HSAADL	3.0	5	7.3	5	7.9	5	15.5	4	2.5	2	5.2	2	
	e) 1	HyComp	13.3	5	41.3	5	182.1	5	Т/О	-	2.6	2	20.3	2	
	ngl	SpaceEx	91.9	2	2.8	1	114.8	1	T/0	-	Т/О	-	Т/О	-	
	F(sir	dReach	139.0	1	Т/О	-	Т/О	-	Т/О	-	Т/О	-	Т/О	-	
		Flow*	1464.7	2	873.4	1	Т/О	-	Т/О	-	45.3	1	291.3	2	
1	at	HSAADL	2.7	5	4.7	5	7.8	5	7.6	5	15.3	5	10.7	4	
	ste	HyComp	1.6	5	8.5	5	37.9	5	2.6	5	15.5	5	43.1	4	
	mo	SpaceEx	2.3	5	696.4	3	34.5	1	2.2	5	T/0	-	T/0	-	
	ler	dReach	341.6	3	57.5	1	Т/О	-	Т/О	-	Т/О	-	Т/О	-	
	Ē	Flow*	3196.4	5	1240.7	2	977.7	1	15.5	3	1718.1	4	T/0	-	
_		HSAADL	3.7	4	37.8	4	6.9	4	1.4	2	16.3	2	2.8	2	
	ble	SpaceEx	1147.6	3	81.1	1	T/0	-	15.2	2	T/0	-	T/0	-	
	Rel	dReach	2156.2	3	274.3	1	T/0	-	T/0	-	T/0	-	T/0	-	
	[p]	Flow*	232.5	2	230.1	1	Т/О	-	2.2	2	25.4	2	2613.8	1	

Timeout: 3,600 seconds

- N: # components
- B: # iterations
- Inv_{\top} : largest *B* for which tool could analyze
- Inv_{\perp}: smallest *B* where counterexample found

_														
				Inv			Inv_{\perp}							
	Model	Tool	N =	2	N =	3	N =	4	N =	= 2	N =	3	N =	4
			Time	В	Time	В	Time	В	Time	В	Time	В	Time	В
		HSADDL	2.0	5	3.9	5	5.8	5	2.4	3	4.2	3	5.9	3
	d e)	HyComp	0.8	5	4.0	5	17.2	5	8.9	3	11.5	3	192.6	3
	en ngl	SpaceEx	8.0	5	2230.3	3	4.5	1	5.1	3	2676.6	3	T/0	-
	R (si	dReach	1382.7	3	107.1	1	T/0	-	T/0	-	T/0	-	T/0	-
		Flow*	3552.8	4	2725.5	2	1205.2	1	167.3	3	380.4	2	838.0	3
		HSAADL	3.0	5	7.3	5	7.9	5	15.5	4	2.5	2	5.2	2
	e) 1	HyComp	13.3	5	41.3	5	182.1	5	T/0	-	2.6	2	20.3	2
	ngl	SpaceEx	91.9	2	2.8	1	114.8	1	T/0	-	Т/О	-	T/0	-
	F(sin	dReach	139.0	1	Т/О	-	Т/О	-	Т/О	-	Т/О	-	Т/О	-
		Flow*	1464.7	2	873.4	1	Т/О	-	Т/О	-	45.3	1	291.3	2
	at	HSAADL	2.7	5	4.7	5	7.8	5	7.6	5	15.3	5	10.7	4
	ste	HyComp	1.6	5	8.5	5	37.9	5	2.6	5	15.5	5	43.1	4
	mo	SpaceEx	2.3	5	696.4	3	34.5	1	2.2	5	T/0	-	T/0	-
	ler	dReach	341.6	3	57.5	1	Т/О	-	T/0	-	Т/О	-	T/0	-
	Ē	Flow*	3196.4	5	1240.7	2	977.7	1	15.5	3	1718.1	4	T/0	-
		HSAADL	3.7	4	37.8	4	6.9	4	1.4	2	16.3	2	2.8	2
	ble	SpaceEx	1147.6	3	81.1	1	T/0	-	15.2	2	T/0	-	T/0	-
	Rei	dReach	2156.2	3	274.3	1	T/0	-	T/0	-	T/0	-	T/0	
	[p)	Flow*	232.5	2	230.1	1	T/0	-	2.2	2	25.4	2	2613.8	1

Timeout: 3,600 seconds

- N: # components
- B: # iterations
- Inv_{\top} : largest *B* for which tool could analyze
- Inv_{\perp}: smallest *B* where counterexample found

				Inv			Inv_{\perp}							
	Model	Tool	N =	2	N =	3	N =	4	N =	= 2	N =	3	N =	4
			Time	В	Time	В	Time	В	Time	В	Time	В	Time	В
		HSADDL	2.0	5	3.9	5	5.8	5	2.4	3	4.2	3	5.9	3
	nd gle)	HyComp	0.8	5	4.0	5	17.2	5	8.9	3	11.5	3	192.6	3
	ler ing	SpaceEx	8.0	5	2230.3	3	4.5	1	5.1	3	2676.6	3	Т/О	-
	I (s	dReach	1382.7	3	107.1	1	Т/О	-	Т/О	-	Т/О	-	Т/О	-
		Flow*	3552.8	4	2725.5	2	1205.2	1	167.3	3	380.4	2	838.0	3
		HSAADL	3.0	5	7.3	5	7.9	5	15.5	4	2.5	2	5.2	2
	n (e)	HyComp	13.3	5	41.3	5	182.1	5	Т/О	-	2.6	2	20.3	2
	orr ngl	SpaceEx	91.9	2	2.8	1	114.8	1	Т/О	-	Т/О	-	T/0	-
	F (si	dReach	139.0	1	T/0	-	Т/О	-	Т/О	-	Т/О	-	T/0	-
		Flow*	1464.7	2	873.4	1	Т/О	-	Т/О	-	45.3	1	291.3	2
	at	HSAADL	2.7	5	4.7	5	7.8	5	7.6	5	15.3	5	10.7	4
	sta	HyComp	1.6	5	8.5	5	37.9	5	2.6	5	15.5	5	43.1	4
	mc	SpaceEx	2.3	5	696.4	3	34.5	1	2.2	5	Т/О	-	T/0	-
	ner	dReach	341.6	3	57.5	1	Т/О	-	T/0	-	Т/О	-	T/0	-
	E	Flow*	3196.4	5	1240.7	2	977.7	1	15.5	3	1718.1	4	T/0	-
_		HSAADL	3.7	4	37.8	4	6.9	4	1.4	2	16.3	2	2.8	2
	ble	SpaceEx	1147.6	3	81.1	1	T/0	-	15.2	2	T/0	-	T/0	-
	Re	dReach	2156.2	3	274.3	1	T/0	-	T/0	-	T/0	-	T/0	
	(q	Flow*	232.5	2	230.1	1	T/0	-	2.2	2	25.4	2	2613.8	1

Timeout: 3,600 seconds

- N: # components
- B: # iterations
- Inv_{\top} : largest *B* for which tool could analyze
- Inv_{\perp}: smallest *B* where counterexample found

	HSAADL HyComp SpaceEx dReach Flow*	From	Experin	nental F	Results				
		Hybrid	SynchAA	ADL is e	ffective	for ana	lyzing mod	els with <mark>both</mark>	
		comple	ex contro	ol progra	ms and	l contini	uous behavi	ors	

15

Complexity Reduction

Formal design patterns (or synchronizers) for CPSs

- 1. Design and verify synchronous system SD
 - abstract from communication, network delays, clock skews, execution times, . . .

Formal design patterns (or synchronizers) for CPSs

- 1. Design and verify synchronous system SD
 - abstract from communication, network delays, clock skews, execution times, . . .
- 2. Obtain correct-by-construction distributed system $\mathcal{A}(SD, \Gamma)$
 - provided bounds Γ on network delay, execution time, and clock skew
Formal design patterns (or synchronizers) for CPSs

- 1. Design and verify synchronous system SD
 - abstract from communication, network delays, clock skews, execution times, . . .
- 2. Obtain correct-by-construction distributed system $\mathcal{A}(SD, \Gamma)$
 - provided bounds Γ on network delay, execution time, and clock skew
- Examples: TTA, LTTA, PALS, HybridPALS, MSYNC, ...

- Analyzed both synchronous and simplified asynchronous models in Maude
 - no execution times, no clock skews, no message delays

- Analyzed both synchronous and simplified asynchronous models in Maude
 - no execution times, no clock skews, no message delays
- Which Cabinet is Active?
 - sync. model: 185 states
 - async. model: 3,047,832 states

- Analyzed both synchronous and simplified asynchronous models in Maude
 - no execution times, no clock skews, no message delays
- Which Cabinet is Active?
 - sync. model: 185 states
 - async. model: 3,047,832 states
- Turning an Airplane
 - sync. model: 364 states
 - async. model: 420,288 states

- PALS and TTA: abstract away time when an event takes place
 - not possible in hybrid systems
 - sensing/actuating time of continuous environment depends on local clocks

- PALS and TTA: abstract away time when an event takes place
 - not possible in hybrid systems
 - sensing/actuating time of continuous environment depends on local clocks
- Hybrid PALS: include time when sensing/actuating local environment
 - abstract from asynchronous communication, network delays, execution times, ...
 - symbolically encode all possible local clocks

			Synchronous Models						Asynchronous Models					
Model	Ν	В	Sample = 1		Sample = 2		Sample = 3		Sample = 1		Sample = 2		Sample = 3	
			Time	#State	Time	#State	Time	#State	Time	#State	Time	#State	Time	#State
Rend (single)	2	$\begin{array}{c} 1\\ 2\\ 3\end{array}$	$0.01 \\ 0.01 \\ 0.02$	$0.03 \\ 0.05 \\ 0.07$	$0.02 \\ 0.2 \\ 2.6$	$0.1 \\ 0.6 \\ 8.9$	$0.1 \\ 1.2 \\ 100.7$	$0.2 \\ 4.1 \\ 297.9$	$6.0 \\ 9.7 \\ 15.0$	$10.7 \\ 19.4 \\ 31.1$	53.5 73.1 107.0	$90.5 \\ 135.2 \\ 208.1$	$251.4 \\ 317.5 \\ 447.7$	$393.0 \\ 528.8 \\ 769.5$
	3	1	0.01	0.04	0.1	0.2	0.2	0.5	970.4	939.7	T/0	-	Т/О	-
Form (single)	2	1	0.01	0.03	0.05	0.1	0.2	0.3	7,937.9	3,888.4	T/0	-	T/0	-
	3	1	0.02	0.05	0.1	0.3	0.5	0.9	т/о	-	T/0	-	T/0	-
Rend (double)	2	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$0.01 \\ 0.02 \\ 0.03$	$0.02 \\ 0.04 \\ 0.07$	$0.03 \\ 0.1 \\ 0.9$	$0.1 \\ 0.2 \\ 1.7$	$0.1 \\ 0.6 \\ 12.9$	$0.1 \\ 8.6 \\ 24.8$	$145.1 \\ 826.3 \\ 2,773.4$	$188.2 \\ 1,121.8 \\ 2,764.0$	1,557.6 10,200.0 T/0	1,500.6 5,495.6 -	15,348.1 T/O T/O	6,339.2 - -
	3	1	0.01	0.03	0.1	0.1	0.2	0.3	Т/О	-	T/0	-	T/0	-
Form (double)	2	1	0.02	0.03	0.1	0.1	0.1	0.1	Т/О	-	T/0	-	T/0	-
	3	1	0.03	0.04	0.1	0.2	0.4	0.4	Т/О	-	T/0	-	T/0	-

Tool and Case Study

• OSATE plug-in

- OSATE plug-in
- Provide an intuitive language to specify properties of models

- OSATE plug-in
- Provide an intuitive language to specify properties of models
- Check if a given model is a valid HybridSynchAADL model

- OSATE plug-in
- Provide an intuitive language to specify properties of models
- Check if a given model is a valid HybridSynchAADL model
- Use OSATE's code generation facilities to synthesize a Maude model

- OSATE plug-in
- Provide an intuitive language to specify properties of models
- Check if a given model is a valid HybridSynchAADL model
- Use OSATE's code generation facilities to synthesize a Maude model
- Invoke Maude and Yices2 to perform formal analysis

Case Study: Collaborating Autonomous Drones

• Collaborate to achieve common goals (e.g., rendezvous, formation, ...)

Case Study: Collaborating Autonomous Drones

• Collaborate to achieve common goals (e.g., rendezvous, formation, ...)

• Continuous dynamics of each drone

$$\vec{x} = \vec{v}$$
 (position \vec{x} , velocity \vec{v})

Case Study: Collaborating Autonomous Drones

• Collaborate to achieve common goals (e.g., rendezvous, formation, ...)

• Continuous dynamics of each drone

$$\vec{x} = \vec{v}$$
 (position \vec{x} , velocity \vec{v})

- Controller of each drone
 - determines the velocity \vec{v} according to the status of the other drones

Example: Rendezvous of Four Distributed Drones

• Each drone communicates with two other drones

Example: Rendezvous of Four Distributed Drones

• Each drone communicates with two other drones

• A drone component consists of an environment and its controller

• A top-level system component

```
(a subset of AADL)
```

```
system implementation FourDronesSystem.impl
  subcomponents
    drones: system Drone::Drone.impl;
                                         dr2: system Drone::Drone.impl;
    dr3: system Drone::Drone.impl;
                                      dr4: system Drone::Drone.impl;
  connections
   C1: port dr1.oX -> dr2.iX; C2: port dr1.oY -> dr2.iY;
   C3: port dr2.oX \rightarrow dr3.iX; C4: port dr2.oY \rightarrow dr3.iY;
   C5: port dr3.oX -> dr4.iX; C6: port dr3.oY -> dr4.iY;
   C7: port dr4.oX \rightarrow dr1.iX; C8: port dr4.oY \rightarrow dr1.iY;
  properties
    Timing => Delayed applies to C1, C2, C3, C4, C5, C6, C7, C8;
    Period => 100ms:
    Hvbrid_SvnchAADL::Svnchronous => true;
    Hvbrid_SvnchAADL::Max_Clock_Deviation => 10ms;
end FourDrones.impl:
```

• A top-level system component

system implementation FourDronesSystem.impl											
nts											
r											

• A top-level system component

```
system implementation FourDronesSystem.impl
  subcomponents
    drones: system Drone::Drone.impl:
                                          dr2: system Drone::Drone.impl;
    dr3: system Drone::Drone.impl;
                                       dr4: system Drone::Drone.impl;
  connections
    C1: port dr1.oX \rightarrow dr2.iX; C2: port dr1.oY \rightarrow dr2.iY;
    C3: port dr2.oX \rightarrow dr3.iX; C4: port dr2.oY \rightarrow dr3.iY;
    C5: port dr3.oX -> dr4.iX; C6: port dr3.oY -> dr4.iY;
    C7: port dr4.oX \rightarrow dr1.iX; C8: port dr4.oY \rightarrow dr1.iY;
                                                                               network connections
  properties
    Timing => Delaved applies to C1, C2, C3, C4, C5, C6, C7, C8;
    Period => 100ms;
    Hvbrid_SvnchAADL::Svnchronous => true;
    Hvbrid_SvnchAADL::Max_Clock_Deviation => 10ms;
end FourDrones.impl:
```

• A top-level system component

```
(a subset of AADL)
```

```
system implementation FourDronesSystem.impl
  subcomponents
    drones: system Drone::Drone.impl:
                                          dr2: system Drone::Drone.impl;
    dr3: system Drone::Drone.impl;
                                       dr4: system Drone::Drone.impl;
  connections
    C1: port dr1.oX \rightarrow dr2.iX; C2: port dr1.oY \rightarrow dr2.iY;
    C3: port dr2.oX \rightarrow dr3.iX; C4: port dr2.oY \rightarrow dr3.iY;
    C5: port dr3.oX -> dr4.iX; C6: port dr3.oY -> dr4.iY;
    C7: port dr4.oX \rightarrow dr1.iX; C8: port dr4.oY \rightarrow dr1.iY;
  properties
    Timing => Delayed applies to C1, C2, C3, C4, C5, C6, C7, C8;
    Period => 100ms:
    Hvbrid_SvnchAADL::Svnchronous => true;
                                                                      HybridSynchAADL annotations
    Hvbrid_SvnchAADL::Max_Clock_Deviation => 10ms;
end FourDrones.impl:
```

• A drone component

```
system Drone
 features
   iX: in data port Base Types::Float: iY: in data port Base Types::Float:
   oX: out data port Base Types::Float:
                                             oY: out data port Base Types::Float:
end Drone:
system implementation Drone.impl
 subcomponents
   ctl: system DroneControl::DroneControl.impl:
   env: system Environment::Environment.impl:
 connections
   C1: port ctl.oX -> oX: C2: port ctl.oY -> oY: C3: port iX -> ctl.iX:
   C4: port iY -> ctl.iY: C5: port ctl.vX -> env.vX: C6: port ctl.vY -> env.vY:
   C7: port env.cX -> ctl.cX; C8: port env.cY -> ctl.cY:
 properties
   Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms;
   Hvbrid SvnchAADL::Response Time => 6ms .. 9ms;
end Drone.impl:
```

• A drone component

```
system Drone
  features
    iX: in data port Base_Types::Float; iY: in data port Base_Types::Float;
    oX: out data port Base Types::Float:
                                             oY: out data port Base_Types::Float:
end Drone:
system implementation Drone.impl
  subcomponents
    ctl: system DroneControl::DroneControl.impl:
    env: system Environment::Environment.impl:
  connections
    C1: port ctl.oX -> oX; C2: port ctl.oY -> oY; C3: port iX -> ctl.iX;
    C4: port iY -> ctl.iY: C5: port ctl.vX -> env.vX: C6: port ctl.vY -> env.vY:
    C7: port env.cX -> ctl.cX; C8: port env.cY -> ctl.cY;
  properties
    Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms;
    Hvbrid SvnchAADL::Response Time => 6ms .. 9ms;
end Drone.impl:
```

• A drone component

```
system Drone
 features
   iX: in data port Base Types::Float: iY: in data port Base Types::Float:
   oX: out data port Base Types::Float:
                                             oY: out data port Base Types::Float:
end Drone:
system implementation Drone.impl
 subcomponents
   ctl: system DroneControl::DroneControl.impl:
   env: system Environment::Environment.impl;
 connections
   C1: port ctl.oX -> oX; C2: port ctl.oY -> oY; C3: port iX -> ctl.iX;
   C4: port iY -> ctl.iY: C5: port ctl.vX -> env.vX: C6: port ctl.vY -> env.vY:
   C7: port env.cX -> ctl.cX; C8: port env.cY -> ctl.cY;
 properties
   Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms;
   Hvbrid SvnchAADL::Response Time => 6ms .. 9ms;
end Drone.impl:
```

• A drone component

```
system Drone
 features
   iX: in data port Base Types::Float: iY: in data port Base Types::Float:
   oX: out data port Base_Types::Float;
                                             oY: out data port Base Types::Float:
end Drone:
system implementation Drone.impl
 subcomponents
   ctl: system DroneControl::DroneControl.impl:
   env: system Environment::Environment.impl:
 connections
   C1: port ctl.oX -> oX: C2: port ctl.oY -> oY: C3: port iX -> ctl.iX:
   C4: port iY -> ctl.iY: C5: port ctl.vX -> env.vX: C6: port ctl.vY -> env.vY:
   C7: port env.cX -> ctl.cX; C8: port env.cY -> ctl.cY;
 properties
                                                               HybridSynchAADL annotations
   Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms;
   Hvbrid SvnchAADL::Response Time => 6ms .. 9ms;
                                                               for environment interactions
end Drone.impl:
```

Example: Discrete Controller in HybridSynchAADL

• A thread component for a drone controller

```
thread implementation DroneControlThread.impl
  subcomponents
    cls: data Base Types::Boolean:
  annex behavior specification {**
    variables
      nx: Base_Types::Float; ny: Base_Types::Float;
    states
      s1: initial complete state: s2, s3: state:
    transitions
      s1 -[on dispatch]-> s2;
      s_2 - [abs(c_X - i_X) < 0.1 and abs(c_Y - i_Y) < 0.1] \rightarrow s_3 
       vX := 0; vY := 0; cls := true ;
      s2 -[otherwise]-> s3 {
        nx := -1 * (cX - iX); nv := -1 * (cY - iY);
       }:
      s3 - [] \rightarrow s1 \{ oX := cX; oY := cY \}; **\};
end DroneControlThread.impl;
```

(AADL's Behavior Annex)

Example: Environment Component in HybridSynchAADL

An environment component

```
system Environment
 features
   cX: out data port Base_Types::Float; cY: out data port Base_Types::Float;
   vX: in data port Base_Types::Float; vY: in data port Base_Types::Float;
 properties
   Hvbrid SvnchAADL::isEnvironment => true:
end Environment:
system implementation Environment.impl
 subcomponents
   x: data Base_Types::Float; velx: data Base_Types::Float;
   v: data Base Types::Float:
                                    velv: data Base Types::Float:
 connections
   C1: port x -> cX; C2: port y -> cY; C3: port vX -> velx; C4: port vY -> velv:
 properties
   Hybrid_SynchAADL::ContinuousDynamics =>
     "x(t) = 0.001 * velx * t + x(0):
      v(t) = 0.001 * velv * t + v(0):":
end Environment.impl:
```

Example: Environment Component in HybridSynchAADL

• An environment component

```
system Environment
 features
   cX: out data port Base Types::Float: cY: out data port Base Types::Float:
   vX: in data port Base Types::Float: vY: in data port Base Types::Float:
 properties
   Hybrid SynchAADL::isEnvironment => true:
                                                           HybridSynchAADL annotation
end Environment:
system implementation Environment.impl
 subcomponents
   x: data Base_Types::Float;
                                    velx: data Base_Types::Float;
   v: data Base Types::Float:
                                    velv: data Base Types::Float:
 connections
   C1: port x -> cX; C2: port y -> cY; C3: port vX -> velx; C4: port vY -> velv:
 properties
   Hybrid_SynchAADL::ContinuousDynamics =>
                                                           HybridSynchAADL annotation
     "x(t) = 0.001 * velx * t + x(0);
                                                           for continuous dynamics
      v(t) = 0.001 * velv * t + v(0):":
end Environment.impl:
```

Example: Specifying Properties in HybridSynchAADL

- Two properties of FourDronesSystem
 - safety: drones do not collide
 - rendezvous: all drones can eventually gather together

Example: Specifying Properties in HybridSynchAADL

- Two properties of FourDronesSystem
 - safety: drones do not collide
 - rendezvous: all drones can eventually gather together

invariant [safety]: ?initial ==> not ?collision in time 500; reachability [rendezvous]: ?initial ==> ?gather in time 500;

Example: Specifying Properties in HybridSynchAADL

- Two properties of FourDronesSystem
 - safety: drones do not collide
 - rendezvous: all drones can eventually gather together

invariant [safety]: ?initial ==> not ?collision in time 500; reachability [rendezvous]: ?initial ==> ?gather in time 500;

• Propositions as AADL Boolean expressions, e.g.,

```
proposition [initial] :
    abs(dr1.env.x - 1.1) < 0.01 and abs(dr1.env.y - 1.5) < 0.01 and
    abs(dr2.env.x + 1.5) < 0.01 and abs(dr2.env.y + 1.1) < 0.01 and
    abs(dr3.env.x - 1.5) < 0.01 and abs(dr3.env.y - 1.1) < 0.01 and
    abs(dr4.env.x + 1.1) < 0.01 and abs(dr4.env.y + 1.5) < 0.01;</pre>
```


🗯 java File E	dit Navigate Search Project Ru	n OSATE A	nalyses HybridS	ynchAADL	Window	Help				
O Intime-osate2 - FourDronesSystem/package/FourDroneSystem.aadl - OSATE2										
🗗 • 🔛 🕼 🏙 🖶 🛅	🗵 be 🗎 🔜 🔲 🖂 본 🌵 🖌		A 🙁 🛄 😒 💁 •	G 🔗 •	<u>∲</u> + {} + ₹	¢ ↔ •	⇒• 🛃 ⊿		۹ 🗈 🎯	
A 23 "1 = 0 System A 23 "1 = 0 System A 24 FourDronesSystem A 24 FourDronesSystem A 25 FourDroneS DroneContre DroneContre DroneContre DroneContre DroneContre DroneSystem DroneSystem	<pre>FourDroneSystem.aadl ⊠ system implementation FourDronesSystem.impl subcomponents dr1: system Drone::Drone.impl; dr2: system Drone::Drone.impl; dr3: system Drone::Drone.impl; dr4: system Drone::Drone.impl; connections C1: port dr1.oX → dr2.iX; C2: port dr3.oX → dr4.iX; C3: port dr3.oX → dr4.iX; C5: port dr3.oX → dr4.iX; C5: port dr3.oY → dr3.iY; C6: port dr3.oY → dr4.iY; C7: port dr3.oY → dr4.iY; C6: port dr3.oY → dr4.iY; C7: port dr3.oY → dr4.iY; C6: port dr3.oY → dr4.iY; Drone:IDANCHADL::Synchronous ⇒ true; Hybrid_SynchAADL::Synchronous ⇒ true; </pre>				<pre>FourDronesSystem_impl_Instance.pspc % FourDronesSystem_impl_Instance.pspc % ranking for the system in time 500; invariant [safety] : rinitial ==> r0qther in time 500; proposition [initial] : abs(dr1.env.x - 1.1) < 0.01 and abs(dr1.env.y - 1.5) < abs(dr2.env.x + 1.5) < 0.01 and abs(dr2.env.y + 1.1) < abs(dr3.env.x - 1.5) < 0.01 and abs(dr3.env.y - 1.1) < abs(dr4.env.x + 1.1) < 0.01 and abs(dr3.env.y - 1.5) < abs(dr4.env.x + 1.1) < 0.01 and abs(dr1.env.y - 1.5) < abs(dr1.env.x - dr2.env.x) < 1.0 and abs(dr1.env.y - d abs(dr1.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr1.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr1.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr1.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr1.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr1.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr1.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr1.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr2.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr2.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr1.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr2.env.x - dr3.env.x) < 1.0 and abs(dr1.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.env.x - dr3.env.x) < 1.0 and abs(dr3.env.y - d abs(dr3.e</pre>					
requirement FourDrones	Hybrid_SynchAADL::Max_Clo Timing => Delayed applies	ck_Deviation to C1, C2, C	=> 10ms; 3, C4, C5, C6	ab	s(dr3.env.	x - dr4	.env.x) < 1	1.0 and abs(dr3	.env.y – d	
FourDrones	♦ HybridSynchAADL Result \X								- 0	
vermeation	PSPC File FourDronesSystem_impl_Instance.pspc FourDronesSystem_impl_Instance.pspc	Property Id rendezvous safety	Result Reachable Counterexample fo	Me sy ound rar	ethod CF mbolic 18 ndom 19	PUTime 872ms 502ms	RunningTime 1792ms 1673ms	Location FourDronesExa FourDronesExa	mple/verificatic mple/verificatic	

Ś	java	File E	dit Navigate	Search	Project	Run	OSATE	Analyses	Hybrid	SynchAA	DL Wind	low Help				
O Intime-osate2 - FourDronesSystem/package/FourDroneSystem.aadi - OSATE2																
•	n (n) 🖄	₩ 📑	🗵 o-c 🗎 🛄 🛛		? 🖉 ¥	•	• • •	1 🕰 😫	9	• 🗁 🛷	• <u>}</u> • {	* 🏷 🗘 •	¢٠ 🖬 🌙		Q	😫 🍖
	3 "1 FourDron Plug-in Plug-in Package jackage ja	ssSystei contrib aced Prc as e e.aadl econtrc ronment DroneSy ysets eSpec.a idSynch ment Droness Droness tion	FourDroneS • system in subcom dr1 dr2 dr3 dr4 connec: C3: C4: C5: C5: C5: C7: C8: proper HybridSync PSPC File	ystem.aadl nplementat oonents : system D : system D : system D : system D i system D port dr1. port dr2. port dr3. port dr4. port dr4. ies rid_SynchA ied => 100 rid_SynchA ing => Del nAADL Resu	X3 ion FourD rone::Dro rone::Dro rone::Dro rone::Dro x -> x ->	ronesS ne.imp ne.imp iX; iX; iX; iX; iY; iY; iY; iY; iY; iY; iY; iY; iY; iY	<pre>bystem.im bl; bl; bl; bl; bl; bl; bl; bl; bl; bl;</pre>	npl ne; c3, c4, Result	; 55, C6	Fou e re e ir e pr e pr e	rDronesSys machabilit ?initial variant [?initial oposition abs(dr1.e abs(dr2.e abs(dr3.e abs(dr4.e abs(dr4.e abs(dr4.e abs(dr4.e abs(dr4.e abs(dr4.e abs(dr4.e abs(dr4.e) abs(d	ttem_impl_ y [rendez; >> ?gath safety] : => not(? [initial nv.x + 1: nv.x + 1: nv.x + 1: nv.x + 1: inv.x + 1: nv.x - dr nv.x - dr	Instance.pspc vous] : er in time ! collision) i] : 1) < 0.01 ar 5) < 0.01 ar 5) < 0.01 ar 5) < 0.01 ar 1) < 0.01 ar : 2.cenv.x) < 1 4.eenv.x) < 1 4.eenv.x) < 1 4.eenv.x) < 1 4.eenv.x) < 1 4.eenv.x) < 1	<pre>b 23 bit in time 500; in time 500; in diabs(dr1.em id abs(dr3.em id abs(dr4.em id abs(dr4.em i.0 and abs(d i.0 and i.</pre>	7.y - 1 7.y + 1 7.y - 1 7.y + 1 1.env. 1.env. -1.env. -2.env. -3.env.	5) < 1) < 1) < 5) < y - d y - d y - d y - d y - d
			FourDronesSys	tem_impl_li tem_impl_li	nstance.ps nstance.ps	oc re	ndezvous ifety	Reacha Counte	ble rexample	found	symbolic random	1872ms 1502ms	1792ms 1673ms	FourDronesEx FourDronesEx	ample/\ ample/\	verificatic verificatic

🗯 java File B	Edit Navigate Search Project Rur	OSATE #	nalyses HybridS	SynchAAD	DL Windo	w Help					
💿 🌑 👘 runtime-osate2 - FourDronesSystem/verification/result/FourDronesSystem_impl_Instance-random-safety.txt - OSATE2											
🗗 • 🔛 🕼 i 🏙 🖽 🛅	🔟 ba 🗎 🥅 🗐 🖂 🖂 🎝 😵 🖬 🛛		A 😟 🔜 🛐 🔛	П 1 Q	- 🗁 🔗	• <u>\$</u> • §	• *\$ \$ • \$	· 🖻	۹ 🗈 👩		
	<pre>FourDronesSystem_impl_Instance-rar Time: 0 FourDronesSystemimplInstance →> dr1 →>{ (ctr1ctrlProccThread) variables: none currState: init] eny →>{ (velx ⇒ -5.126442502980€ (velx ⇒ -5.126442502980€ (velx ⇒ -5.126642502980€ (velx ⇒ -1.051727799834153 currMode: @default@loc@d dr3 →{ (ctr1ctrlProccThread) variables: none currState: init] eny →{ variables: (velx = -5.126642502980€</pre>	23	<pre>PourDronesSystem_impl_Instance.pspc %% Prachability (rendezvous] : ?initial ==> ?gather in time 500; invariant [safety] : ?initial ==> rost(?collision) in time 500; proposition [initial] : abs(dr1.env.x - 1.1) < 0.01 and abs(dr1.env.y - 1.5) < abs(dr2.env.x + 1.5) < 0.01 and abs(dr3.env.y - 1.1) < abs(dr4.env.x - 1.5) < 0.01 and abs(dr3.env.y - 1.1) < abs(dr4.env.x + 1.1) < 0.01 and abs(dr4.env.y + 1.5) < ebs(dr4.env.x + 1.5) < 0.01 and abs(dr4.env.y + 1.5) < ebs(dr4.env.x - 1.5) < 0.01 and abs(dr4.env.y + 1.5) < ebs(dr4.env.x - 1.5) < 0.01 and abs(dr4.env.y + 1.5) < ebs(dr4.env.x - dr2.env.x) < 1.0 and abs(dr1.env.y - d abs(dr1.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.x - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.y - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.y - dr4.env.x) < 1.0 and abs(dr2.env.y - d abs(dr4.env.y - dr4.env.y < 1.0 and abs(dr2.env.y - d abs(dr4.env.y - dr4.env.y < 1.0 and abs(dr4.env.y - d abs(dr4.env.y - dr4.env.y < 1.0 and abs(dr4.env.y - d abs(dr4.env.y - dr4.env.y < 1.0 and abs(dr4.env.y - d abs(dr4.env.y < dr4.env.y < 1.0 and abs(dr4.env.y - d abs(dr4.env.y < dr4.env.y < 1.0 and abs(dr4.env.y - d abs(dr4.env.y < dr4.env.y < 1.0 and abs(dr4.env.y - d abs(dr4.env.y < dr4.env.y < dr4</pre>								
FourDrones	HybridSynchAADL Result 🔀								- 0		
 > > instance > > > randomized- 	PSPC File FourDronesSystem_impl_Instance.pspc	Property Id rendezvous	Result Reachable	N S	Method symbolic	CPUTime 1872ms	RunningTime 1792ms	Location FourDronesExa	mple/verificatio		
 Consolit 	Tourbronessystem_impi_instance.pspc	Salety	Counterexample r	ound 1	andom		10751115	T OUT DA OTTESE Xa	ngng vermeend		

Goal

Goal

- HybridSynchAADL modeling language
 - models synchronous designs in AADL
 - easy-to-use for CPS developers

Goal

- HybridSynchAADL modeling language
 - models synchronous designs in AADL
 - easy-to-use for CPS developers
- HybridSynchAADL tool
 - design and automatic formal analysis inside OSATE
 - symbolic reachability analysis using Maude and SMT

Goal

- HybridSynchAADL modeling language
 - models synchronous designs in AADL
 - easy-to-use for CPS developers
- HybridSynchAADL tool
 - design and automatic formal analysis inside OSATE
 - symbolic reachability analysis using Maude and SMT
- Hybrid PALS
 - reduces the design and verification complexity
 - synchronizer for virtually synchronous CPSs with continuous dynamics

Thank you!