
Formal Model Engineering of

Synchronous CPS Designs in AADL

Kyungmin Bae1 Peter Csaba Ölveczky2

1Pohang University of Science and Technology (POSTECH), Korea
2University of Oslo, Norway

2nd ADEPT workshop: AADL by its practitioners

June 16, 2023

1

Cyber-Physical Systems (CPSs)

• Distributed controllers that interact with (physical) environments

Controller1

Controller3
Controller4

Controller2

Network
(Physical)
Entities

(Physical)
Entities

(Physical)
Entities

• Many safety-critical applications

2

Cyber-Physical Systems (CPSs)

• Distributed controllers that interact with (physical) environments

• Many safety-critical applications

http://www.cvel.clemson.edu/auto/systems/auto-systems.html

2

http://www.cvel.clemson.edu/auto/systems/auto-systems.html

Cyber-Physical Systems (CPSs)

• Distributed controllers that interact with (physical) environments

• Many safety-critical applications

http://articles.sae.org/10234/

2

http://articles.sae.org/10234/

Cyber-Physical Systems (CPSs)

• Distributed controllers that interact with (physical) environments

• Many safety-critical applications

https://web-material3.yokogawa.com/image_8434.jpg

2

https://web-material3.yokogawa.com/image_8434.jpg

Formal Methods + Model-Based Development with AADL

• General models for many deployment scenarios

• Efficient formal analysis of such general models

• Safe deployment of the analyzed models

3

Many CPSs are Virtually Synchronous CPSs

• Synchronous behavior & distributed realization: avionics, automotive, . . .

Component A
Round 2 Round 3 Round 4

Component B
Round 2 Round 3 Round 4

• Have be correct in many distributed settings

• time synchronization (IEEE 1588, etc.), bounded network delays, . . .

4

Designing and Verifying Virtually Synchronous CPSs

• Hard to design

: network delays, execution times, clock skews, race conditions, . . .

Component A
Round 2 Round 3 Round 4

Component B
Round 2 Round 3 Round 4

• Hard to verify

• (discrete) state space explosion due to asynchrony (+ continuous dynamics)

• Hard to deploy correctly

• small changes can cause bugs if only verified for specific deployment scenario

5

Designing and Verifying Virtually Synchronous CPSs

• Hard to design: network delays, execution times, clock skews, race conditions, . . .

Component A
Round 2 Round 3 Round 4

Component B
Round 2 Round 3 Round 4

• Hard to verify

• (discrete) state space explosion due to asynchrony (+ continuous dynamics)

• Hard to deploy correctly

• small changes can cause bugs if only verified for specific deployment scenario

5

Designing and Verifying Virtually Synchronous CPSs

• Hard to design: network delays, execution times, clock skews, race conditions, . . .

Component A
Round 2 Round 3 Round 4

Component B
Round 2 Round 3 Round 4

• Hard to verify

• (discrete) state space explosion due to asynchrony (+ continuous dynamics)

• Hard to deploy correctly

• small changes can cause bugs if only verified for specific deployment scenario

5

Designing and Verifying Virtually Synchronous CPSs

• Hard to design: network delays, execution times, clock skews, race conditions, . . .

Component A
Round 2 Round 3 Round 4

Component B
Round 2 Round 3 Round 4

• Hard to verify

• (discrete) state space explosion due to asynchrony (+ continuous dynamics)

• Hard to deploy correctly

• small changes can cause bugs if only verified for specific deployment scenario

5

Example: Which Cabinet is Active?

• ≥ 30 hours to model-check, (for specific network delays, execution times, . . .)
6

Long-Term Goal

Goal

Enable automated formal analysis for domain-specific modeling of virtually

synchronous CPSs

• An easy-to-use modeling language for CPS developers

• A tool integrated with mature modeling environments

• A technique to reduce the design and verification complexity

7

Our Approach

1. Model synchronous design SD in the HybridSynchAADL modeling language

2. Verify SD using the HybridSynchAADL OSATE plugin

3. Obtain the corresponding asynchronous model using the Hybrid PALS synchronizer

8

Modeling Language

Language Design

• Goal

• to abstractly capture many deployment scenarios

• to model advanced control programs and continuous behaviors in AADL

• Design choice

• use subset of AADL

• leverage existing AADL constructs as much as possible

9

The HybridSynchAADL Modeling Language (1)

• Model synchronous designs with continuous dynamics

• distributed controllers, continuous environments, sampling/actuation times, . . .

• Distributed controllers

• in a subset of AADL: constructs have the same meaning as in AADL

• Continuous environments

• continuous dynamics specified using continuous real functions or ODEs

10

The HybridSynchAADL Modeling Language (1)

• Model synchronous designs with continuous dynamics

• distributed controllers, continuous environments, sampling/actuation times, . . .

• Distributed controllers

• in a subset of AADL: constructs have the same meaning as in AADL

• Continuous environments

• continuous dynamics specified using continuous real functions or ODEs

10

The HybridSynchAADL Modeling Language (1)

• Model synchronous designs with continuous dynamics

• distributed controllers, continuous environments, sampling/actuation times, . . .

• Distributed controllers

• in a subset of AADL: constructs have the same meaning as in AADL

• Continuous environments

• continuous dynamics specified using continuous real functions or ODEs

10

The HybridSynchAADL Modeling Language (2)

• Extended with new AADL property set Hybrid SynchAADL

property set Hybrid_SynchAADL is

Synchronous: inherit aadlboolean applies to (system);

isEnvironment: inherit aadlboolean applies to (system);

ContinuousDynamics: aadlstring applies to (system);

Max_Clock_Deviation: inherit Time applies to (system);

Sampling_Time: inherit Time_Range applies to (system);

Response_Time: inherit Time_Range applies to (system);

end Hybrid_SynchAADL;

• Minimize new syntactic extensions for ease of use by existing AADL users

11

Formal Semantics

Formal Semantics of HybridSynchAADL

• Formal semantics of HybridSynchAADL in Maude and SMT

• Maude : a language and tool for specifying and analyzing distributed systems

• Discrete behaviors are specified in Maude

• thread behaviors, behavior annex programs, synchronous communication, . . .

• Continuous behaviors are encoded in SMT

• continuous dynamics, sampling/actuation times, clock skews, . . .

12

Formal Semantics of HybridSynchAADL

• Formal semantics of HybridSynchAADL in Maude and SMT

• Maude : a language and tool for specifying and analyzing distributed systems

• Discrete behaviors are specified in Maude

• thread behaviors, behavior annex programs, synchronous communication, . . .

• Continuous behaviors are encoded in SMT

• continuous dynamics, sampling/actuation times, clock skews, . . .

12

Formal Semantics of HybridSynchAADL

• Formal semantics of HybridSynchAADL in Maude and SMT

• Maude : a language and tool for specifying and analyzing distributed systems

• Discrete behaviors are specified in Maude

• thread behaviors, behavior annex programs, synchronous communication, . . .

• Continuous behaviors are encoded in SMT

• continuous dynamics, sampling/actuation times, clock skews, . . .

12

Formal Analysis of HybridSynchAADL

• Randomized simulation

• randomly “samples” clock skews, sampling/actuation times, initial values, . . .

• Symbolic reachability analysis

• all possible continuous behaviors are encoded in SMT

• Portfolio analysis

• execute randomized simulation and symbolic reachability analysis in parallel

13

Formal Analysis of HybridSynchAADL

• Randomized simulation

• randomly “samples” clock skews, sampling/actuation times, initial values, . . .

• Symbolic reachability analysis

• all possible continuous behaviors are encoded in SMT

• Portfolio analysis

• execute randomized simulation and symbolic reachability analysis in parallel

13

Formal Analysis of HybridSynchAADL

• Randomized simulation

• randomly “samples” clock skews, sampling/actuation times, initial values, . . .

• Symbolic reachability analysis

• all possible continuous behaviors are encoded in SMT

• Portfolio analysis

• execute randomized simulation and symbolic reachability analysis in parallel

13

Experimental Evaluation

• Compare the performance of HybridSynchAADL’s symbolic reachability analysis

• with hybrid automata reachability analysis tools: HyComp, SpaceEx, Flow*, dReach

• Analysis invariant properties of synchronous designs up to bounds

• two properties: Inv⊤ (which holds), and Inv⊥ (which does not hold)

14

Experimental Evaluation

• Compare the performance of HybridSynchAADL’s symbolic reachability analysis

• with hybrid automata reachability analysis tools: HyComp, SpaceEx, Flow*, dReach

• Analysis invariant properties of synchronous designs up to bounds

• two properties: Inv⊤ (which holds), and Inv⊥ (which does not hold)

14

Experimental Evaluation
10

Table 1. HybridSynchAADL vs. HyComp, SpaceEx, dReach, and Flow*.

Model Tool

Inv> Inv?

N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

Time B Time B Time B Time B Time B Time B

R
en

d
(s

in
gl

e)

HSADDL 2.0 5 3.9 5 5.8 5 2.4 3 4.2 3 5.9 3
HyComp 0.8 5 4.0 5 17.2 5 8.9 3 11.5 3 192.6 3
SpaceEx 8.0 5 2230.3 3 4.5 1 5.1 3 2676.6 3 T/O -
dReach 1382.7 3 107.1 1 T/O - T/O - T/O - T/O -
Flow* 3552.8 4 2725.5 2 1205.2 1 167.3 3 380.4 2 838.0 3

Fo
rm

(s
in

gl
e)

HSAADL 3.0 5 7.3 5 7.9 5 15.5 4 2.5 2 5.2 2
HyComp 13.3 5 41.3 5 182.1 5 T/O - 2.6 2 20.3 2
SpaceEx 91.9 2 2.8 1 114.8 1 T/O - T/O - T/O -
dReach 139.0 1 T/O - T/O - T/O - T/O - T/O -
Flow* 1464.7 2 873.4 1 T/O - T/O - 45.3 1 291.3 2

T
he

rm
os

ta
t HSAADL 2.7 5 4.7 5 7.8 5 7.6 5 15.3 5 10.7 4

HyComp 1.6 5 8.5 5 37.9 5 2.6 5 15.5 5 43.1 4
SpaceEx 2.3 5 696.4 3 34.5 1 2.2 5 T/O - T/O -
dReach 341.6 3 57.5 1 T/O - T/O - T/O - T/O -
Flow* 3196.4 5 1240.7 2 977.7 1 15.5 3 1718.1 4 T/O -

R
en

d
(d

ou
bl

e) HSAADL 3.7 4 37.8 4 6.9 4 1.4 2 16.3 2 2.8 2
SpaceEx 1147.6 3 81.1 1 T/O - 15.2 2 T/O - T/O -
dReach 2156.2 3 274.3 1 T/O - T/O - T/O - T/O -
Flow* 232.5 2 230.1 1 T/O - 2.2 2 25.4 2 2613.8 1

a specialized version of Maude with Yices 2.6 for polynomial arithmetic [44]. For
SpaceEx, we use PHAVer for linear dynamics, and STC for nonlinear polynomial
dynamics. For Flow*, we use adaptive steps, and TM orders 1 (for single) and
2 (for double). We use the default precision for dReach, and BMC for HyComp.
We have run all experiments on Intel Xeon 2.8GHz with 256 GB memory.

The results are summarized in Table 1, as execution times (seconds) over time
bounds (B · 100 ms), with N the number of components. The results for “Rend
(double)” (rendezvous with double-integrator dynamics, where control input is
given by acceleration instead of velocity) do not include HyComp, which does
not support nonlinear polynomial dynamics. For Inv>, Table 1 shows the largest
time bound for which the tool could prove the absence of counterexamples.
Often, tools timed out when trying to verify that Inv> holds up to time bound
500.4 For Inv?, the table shows the smallest bound for which the tool found
counterexamples.5 As seen, HybridSynchAADL outperforms the other tools
in most cases, in particular for complex models with larger N .

4 E.g., for “Rend (single)” with N = 4, HybridSynchAADL needs 5.8 seconds for
B = 5, whereas SpaceEx needs 4.5 seconds for B = 1 and timed out for B > 1.

5 Flow* occasionally found (spurious) counterexamples at smaller bounds, because of
over-approximation by the Taylor model flowpipe construction.

Timeout: 3,600 seconds

N: # components

B: # iterations

Inv⊤: largest B for which

tool could analyze

Inv⊥: smallest B where

counterexample found

15

Experimental Evaluation
10

Table 1. HybridSynchAADL vs. HyComp, SpaceEx, dReach, and Flow*.

Model Tool

Inv> Inv?

N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

Time B Time B Time B Time B Time B Time B

R
en

d
(s

in
gl

e)

HSADDL 2.0 5 3.9 5 5.8 5 2.4 3 4.2 3 5.9 3
HyComp 0.8 5 4.0 5 17.2 5 8.9 3 11.5 3 192.6 3
SpaceEx 8.0 5 2230.3 3 4.5 1 5.1 3 2676.6 3 T/O -
dReach 1382.7 3 107.1 1 T/O - T/O - T/O - T/O -
Flow* 3552.8 4 2725.5 2 1205.2 1 167.3 3 380.4 2 838.0 3

Fo
rm

(s
in

gl
e)

HSAADL 3.0 5 7.3 5 7.9 5 15.5 4 2.5 2 5.2 2
HyComp 13.3 5 41.3 5 182.1 5 T/O - 2.6 2 20.3 2
SpaceEx 91.9 2 2.8 1 114.8 1 T/O - T/O - T/O -
dReach 139.0 1 T/O - T/O - T/O - T/O - T/O -
Flow* 1464.7 2 873.4 1 T/O - T/O - 45.3 1 291.3 2

T
he

rm
os

ta
t HSAADL 2.7 5 4.7 5 7.8 5 7.6 5 15.3 5 10.7 4

HyComp 1.6 5 8.5 5 37.9 5 2.6 5 15.5 5 43.1 4
SpaceEx 2.3 5 696.4 3 34.5 1 2.2 5 T/O - T/O -
dReach 341.6 3 57.5 1 T/O - T/O - T/O - T/O -
Flow* 3196.4 5 1240.7 2 977.7 1 15.5 3 1718.1 4 T/O -

R
en

d
(d

ou
bl

e) HSAADL 3.7 4 37.8 4 6.9 4 1.4 2 16.3 2 2.8 2
SpaceEx 1147.6 3 81.1 1 T/O - 15.2 2 T/O - T/O -
dReach 2156.2 3 274.3 1 T/O - T/O - T/O - T/O -
Flow* 232.5 2 230.1 1 T/O - 2.2 2 25.4 2 2613.8 1

a specialized version of Maude with Yices 2.6 for polynomial arithmetic [44]. For
SpaceEx, we use PHAVer for linear dynamics, and STC for nonlinear polynomial
dynamics. For Flow*, we use adaptive steps, and TM orders 1 (for single) and
2 (for double). We use the default precision for dReach, and BMC for HyComp.
We have run all experiments on Intel Xeon 2.8GHz with 256 GB memory.

The results are summarized in Table 1, as execution times (seconds) over time
bounds (B · 100 ms), with N the number of components. The results for “Rend
(double)” (rendezvous with double-integrator dynamics, where control input is
given by acceleration instead of velocity) do not include HyComp, which does
not support nonlinear polynomial dynamics. For Inv>, Table 1 shows the largest
time bound for which the tool could prove the absence of counterexamples.
Often, tools timed out when trying to verify that Inv> holds up to time bound
500.4 For Inv?, the table shows the smallest bound for which the tool found
counterexamples.5 As seen, HybridSynchAADL outperforms the other tools
in most cases, in particular for complex models with larger N .

4 E.g., for “Rend (single)” with N = 4, HybridSynchAADL needs 5.8 seconds for
B = 5, whereas SpaceEx needs 4.5 seconds for B = 1 and timed out for B > 1.

5 Flow* occasionally found (spurious) counterexamples at smaller bounds, because of
over-approximation by the Taylor model flowpipe construction.

Timeout: 3,600 seconds

N: # components

B: # iterations

Inv⊤: largest B for which

tool could analyze

Inv⊥: smallest B where

counterexample found

15

Experimental Evaluation
10

Table 1. HybridSynchAADL vs. HyComp, SpaceEx, dReach, and Flow*.

Model Tool

Inv> Inv?

N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

Time B Time B Time B Time B Time B Time B

R
en

d
(s

in
gl

e)

HSADDL 2.0 5 3.9 5 5.8 5 2.4 3 4.2 3 5.9 3
HyComp 0.8 5 4.0 5 17.2 5 8.9 3 11.5 3 192.6 3
SpaceEx 8.0 5 2230.3 3 4.5 1 5.1 3 2676.6 3 T/O -
dReach 1382.7 3 107.1 1 T/O - T/O - T/O - T/O -
Flow* 3552.8 4 2725.5 2 1205.2 1 167.3 3 380.4 2 838.0 3

Fo
rm

(s
in

gl
e)

HSAADL 3.0 5 7.3 5 7.9 5 15.5 4 2.5 2 5.2 2
HyComp 13.3 5 41.3 5 182.1 5 T/O - 2.6 2 20.3 2
SpaceEx 91.9 2 2.8 1 114.8 1 T/O - T/O - T/O -
dReach 139.0 1 T/O - T/O - T/O - T/O - T/O -
Flow* 1464.7 2 873.4 1 T/O - T/O - 45.3 1 291.3 2

T
he

rm
os

ta
t HSAADL 2.7 5 4.7 5 7.8 5 7.6 5 15.3 5 10.7 4

HyComp 1.6 5 8.5 5 37.9 5 2.6 5 15.5 5 43.1 4
SpaceEx 2.3 5 696.4 3 34.5 1 2.2 5 T/O - T/O -
dReach 341.6 3 57.5 1 T/O - T/O - T/O - T/O -
Flow* 3196.4 5 1240.7 2 977.7 1 15.5 3 1718.1 4 T/O -

R
en

d
(d

ou
bl

e) HSAADL 3.7 4 37.8 4 6.9 4 1.4 2 16.3 2 2.8 2
SpaceEx 1147.6 3 81.1 1 T/O - 15.2 2 T/O - T/O -
dReach 2156.2 3 274.3 1 T/O - T/O - T/O - T/O -
Flow* 232.5 2 230.1 1 T/O - 2.2 2 25.4 2 2613.8 1

a specialized version of Maude with Yices 2.6 for polynomial arithmetic [44]. For
SpaceEx, we use PHAVer for linear dynamics, and STC for nonlinear polynomial
dynamics. For Flow*, we use adaptive steps, and TM orders 1 (for single) and
2 (for double). We use the default precision for dReach, and BMC for HyComp.
We have run all experiments on Intel Xeon 2.8GHz with 256 GB memory.

The results are summarized in Table 1, as execution times (seconds) over time
bounds (B · 100 ms), with N the number of components. The results for “Rend
(double)” (rendezvous with double-integrator dynamics, where control input is
given by acceleration instead of velocity) do not include HyComp, which does
not support nonlinear polynomial dynamics. For Inv>, Table 1 shows the largest
time bound for which the tool could prove the absence of counterexamples.
Often, tools timed out when trying to verify that Inv> holds up to time bound
500.4 For Inv?, the table shows the smallest bound for which the tool found
counterexamples.5 As seen, HybridSynchAADL outperforms the other tools
in most cases, in particular for complex models with larger N .

4 E.g., for “Rend (single)” with N = 4, HybridSynchAADL needs 5.8 seconds for
B = 5, whereas SpaceEx needs 4.5 seconds for B = 1 and timed out for B > 1.

5 Flow* occasionally found (spurious) counterexamples at smaller bounds, because of
over-approximation by the Taylor model flowpipe construction.

Timeout: 3,600 seconds

N: # components

B: # iterations

Inv⊤: largest B for which

tool could analyze

Inv⊥: smallest B where

counterexample found

15

Experimental Evaluation
10

Table 1. HybridSynchAADL vs. HyComp, SpaceEx, dReach, and Flow*.

Model Tool

Inv> Inv?

N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

Time B Time B Time B Time B Time B Time B

R
en

d
(s

in
gl

e)

HSADDL 2.0 5 3.9 5 5.8 5 2.4 3 4.2 3 5.9 3
HyComp 0.8 5 4.0 5 17.2 5 8.9 3 11.5 3 192.6 3
SpaceEx 8.0 5 2230.3 3 4.5 1 5.1 3 2676.6 3 T/O -
dReach 1382.7 3 107.1 1 T/O - T/O - T/O - T/O -
Flow* 3552.8 4 2725.5 2 1205.2 1 167.3 3 380.4 2 838.0 3

Fo
rm

(s
in

gl
e)

HSAADL 3.0 5 7.3 5 7.9 5 15.5 4 2.5 2 5.2 2
HyComp 13.3 5 41.3 5 182.1 5 T/O - 2.6 2 20.3 2
SpaceEx 91.9 2 2.8 1 114.8 1 T/O - T/O - T/O -
dReach 139.0 1 T/O - T/O - T/O - T/O - T/O -
Flow* 1464.7 2 873.4 1 T/O - T/O - 45.3 1 291.3 2

T
he

rm
os

ta
t HSAADL 2.7 5 4.7 5 7.8 5 7.6 5 15.3 5 10.7 4

HyComp 1.6 5 8.5 5 37.9 5 2.6 5 15.5 5 43.1 4
SpaceEx 2.3 5 696.4 3 34.5 1 2.2 5 T/O - T/O -
dReach 341.6 3 57.5 1 T/O - T/O - T/O - T/O -
Flow* 3196.4 5 1240.7 2 977.7 1 15.5 3 1718.1 4 T/O -

R
en

d
(d

ou
bl

e) HSAADL 3.7 4 37.8 4 6.9 4 1.4 2 16.3 2 2.8 2
SpaceEx 1147.6 3 81.1 1 T/O - 15.2 2 T/O - T/O -
dReach 2156.2 3 274.3 1 T/O - T/O - T/O - T/O -
Flow* 232.5 2 230.1 1 T/O - 2.2 2 25.4 2 2613.8 1

a specialized version of Maude with Yices 2.6 for polynomial arithmetic [44]. For
SpaceEx, we use PHAVer for linear dynamics, and STC for nonlinear polynomial
dynamics. For Flow*, we use adaptive steps, and TM orders 1 (for single) and
2 (for double). We use the default precision for dReach, and BMC for HyComp.
We have run all experiments on Intel Xeon 2.8GHz with 256 GB memory.

The results are summarized in Table 1, as execution times (seconds) over time
bounds (B · 100 ms), with N the number of components. The results for “Rend
(double)” (rendezvous with double-integrator dynamics, where control input is
given by acceleration instead of velocity) do not include HyComp, which does
not support nonlinear polynomial dynamics. For Inv>, Table 1 shows the largest
time bound for which the tool could prove the absence of counterexamples.
Often, tools timed out when trying to verify that Inv> holds up to time bound
500.4 For Inv?, the table shows the smallest bound for which the tool found
counterexamples.5 As seen, HybridSynchAADL outperforms the other tools
in most cases, in particular for complex models with larger N .

4 E.g., for “Rend (single)” with N = 4, HybridSynchAADL needs 5.8 seconds for
B = 5, whereas SpaceEx needs 4.5 seconds for B = 1 and timed out for B > 1.

5 Flow* occasionally found (spurious) counterexamples at smaller bounds, because of
over-approximation by the Taylor model flowpipe construction.

Timeout: 3,600 seconds

N: # components

B: # iterations

Inv⊤: largest B for which

tool could analyze

Inv⊥: smallest B where

counterexample found

15

From Experimental Results

HybridSynchAADL is effective for analyzing models with both

complex control programs and continuous behaviors

Complexity Reduction

Reducing Design/Verification Complexity Using Synchronizers

Formal design patterns (or synchronizers) for CPSs

1. Design and verify synchronous system SD

• abstract from communication, network delays, clock skews, execution times, . . .

2. Obtain correct-by-construction distributed system A(SD, Γ)

• provided bounds Γ on network delay, execution time, and clock skew

• Examples: TTA, LTTA, PALS, HybridPALS, MSYNC, . . .

16

Reducing Design/Verification Complexity Using Synchronizers

Formal design patterns (or synchronizers) for CPSs

1. Design and verify synchronous system SD

• abstract from communication, network delays, clock skews, execution times, . . .

2. Obtain correct-by-construction distributed system A(SD, Γ)

• provided bounds Γ on network delay, execution time, and clock skew

• Examples: TTA, LTTA, PALS, HybridPALS, MSYNC, . . .

16

Reducing Design/Verification Complexity Using Synchronizers

Formal design patterns (or synchronizers) for CPSs

1. Design and verify synchronous system SD

• abstract from communication, network delays, clock skews, execution times, . . .

2. Obtain correct-by-construction distributed system A(SD, Γ)

• provided bounds Γ on network delay, execution time, and clock skew

• Examples: TTA, LTTA, PALS, HybridPALS, MSYNC, . . .

16

Examples: Synch vs. Async

• Analyzed both synchronous and simplified asynchronous models in Maude
• no execution times, no clock skews, no message delays

• Which Cabinet is Active?

• sync. model: 185 states

• async. model: 3,047,832 states

• Turning an Airplane

• sync. model: 364 states

• async. model: 420,288 states

Pilot console

(600ms)

The Airplane Turning Control System (60ms)

Main controller

(60ms)

Left wing subcontroller (15ms)

Rudder subcontroller (20ms)

Right wing subcontroller (15ms)

goalψ

ψ

goalL

αL

goalV

αV

goalR

αR

17

Examples: Synch vs. Async

• Analyzed both synchronous and simplified asynchronous models in Maude
• no execution times, no clock skews, no message delays

• Which Cabinet is Active?

• sync. model: 185 states

• async. model: 3,047,832 states

• Turning an Airplane

• sync. model: 364 states

• async. model: 420,288 states

Pilot console

(600ms)

The Airplane Turning Control System (60ms)

Main controller

(60ms)

Left wing subcontroller (15ms)

Rudder subcontroller (20ms)

Right wing subcontroller (15ms)

goalψ

ψ

goalL

αL

goalV

αV

goalR

αR

17

Examples: Synch vs. Async

• Analyzed both synchronous and simplified asynchronous models in Maude
• no execution times, no clock skews, no message delays

• Which Cabinet is Active?

• sync. model: 185 states

• async. model: 3,047,832 states

• Turning an Airplane

• sync. model: 364 states

• async. model: 420,288 states

Pilot console

(600ms)

The Airplane Turning Control System (60ms)

Main controller

(60ms)

Left wing subcontroller (15ms)

Rudder subcontroller (20ms)

Right wing subcontroller (15ms)

goalψ

ψ

goalL

αL

goalV

αV

goalR

αR 17

Hybrid PALS

• PALS and TTA: abstract away time when an event takes place

• not possible in hybrid systems

• sensing/actuating time of continuous environment depends on local clocks

• Hybrid PALS: include time when sensing/actuating local environment

• abstract from asynchronous communication, network delays, execution times, . . .

• symbolically encode all possible local clocks

18

Hybrid PALS

• PALS and TTA: abstract away time when an event takes place

• not possible in hybrid systems

• sensing/actuating time of continuous environment depends on local clocks

• Hybrid PALS: include time when sensing/actuating local environment

• abstract from asynchronous communication, network delays, execution times, . . .

• symbolically encode all possible local clocks

18

Examples: Synch vs. Async

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 39

Table 6 Analyzing distributed asynchronous models (Time in seconds, and #State in thousands).

Model N B

Synchronous Models Asynchronous Models

|Sample| = 1 |Sample| = 2 |Sample| = 3 |Sample| = 1 |Sample| = 2 |Sample| = 3

Time #State Time #State Time #State Time #State Time #State Time #State

R
en

d
(s

in
g
le

)

2
1 0.01 0.03 0.02 0.1 0.1 0.2 6.0 10.7 53.5 90.5 251.4 393.0
2 0.01 0.05 0.2 0.6 1.2 4.1 9.7 19.4 73.1 135.2 317.5 528.8
3 0.02 0.07 2.6 8.9 100.7 297.9 15.0 31.1 107.0 208.1 447.7 769.5

3 1 0.01 0.04 0.1 0.2 0.2 0.5 970.4 939.7 T/O - T/O -

F
o
rm

(s
in

g
le

)

2 1 0.01 0.03 0.05 0.1 0.2 0.3 7,937.9 3,888.4 T/O - T/O -

3 1 0.02 0.05 0.1 0.3 0.5 0.9 T/O - T/O - T/O -

R
en

d
(d

o
u
b
le

) 2
1 0.01 0.02 0.03 0.1 0.1 0.1 145.1 188.2 1,557.6 1,500.6 15,348.1 6,339.2
2 0.02 0.04 0.1 0.2 0.6 8.6 826.3 1,121.8 10,200.0 5,495.6 T/O -
3 0.03 0.07 0.9 1.7 12.9 24.8 2,773.4 2,764.0 T/O - T/O -

3 1 0.01 0.03 0.1 0.1 0.2 0.3 T/O - T/O - T/O -

F
o
rm

(d
o
u
b
le

)

2 1 0.02 0.03 0.1 0.1 0.1 0.1 T/O - T/O - T/O -

3 1 0.03 0.04 0.1 0.2 0.4 0.4 T/O - T/O - T/O -

control programs) of CPSs. In addition, Hybrid-
SynchAADL can easily specify and analyze both
continuous dynamics and imprecise local clocks.

Hybrid Systems in AADL

The Hybrid Annex for AADL [30] allows model-
ing continuous behaviors in AADL. Its developers
also provide theorem proving support for proving
properties in Hoare Logic combined with Duration
Calculus [46]. Controller behaviors are defined
in Hybrid CSP. Only a “synchronous” subset of
AADL is considered: clock skews, message delays,
and execution times are not taken into account.
In contrast, we use AADL’s expressive Behavior
Annex to specify controller behaviors. Hybrid-
SynchAADL provides automatic model checking
analysis instead of interactive theorem proving.
Moreover, we consider (virtually synchronous)
CPSs—with clock skews, network delays, etc.—
using the Hybrid PALS equivalence.

In [47], an Uncertainty Annex is added to the
Hybrid Annex. Uncertain Hybrid AADL models
can be transformed into networks of priced timed
automata that can then be subjected to statistical
model checking using Uppaal-SMC to evaluate the
performance of the models. Another hybrid annex
is proposed in [31], and an AADL sublanguage,
called AADL+, where continuous behaviors can

be defined using stochastic di↵erential equations,
is given in [48]. Both approaches come with some
kind of operational semantics and simulation, but
with no formal analysis support.

PALS and AADL

Synchronous AADL [33, 49] and its multi-rate ex-
tension [32] support the modeling and analysis
of synchronous PALS models of virtually syn-
chronous distributed real-time systems without
continuous behaviors in AADL. Since the time
when an event takes place can be abstracted away,
there is no need to consider clock skews, and
any (su�ciently expressive) explicit-state model
checker, such as Maude, can be used.

In contrast, HybridSynchAADL must model
continuous behaviors and clock skews, and must
analyze all possible behaviors based on when the
continuous components are sampled and actuated,
which depend on the imprecise local clocks. This
required us to leave the explicit-state world and
use Maude with SMT solving. In this way, we
can cover all possible behaviors, but are currently
restricted to reachability analysis.

Formal Analysis of Hybrid PALS Models

The paper [10] shows how synchronous Hybrid
PALS models with simple finite-state machine

19

Tool and Case Study

The HybridSynchAADL Tool

The HybridSynchAADL Tool
HybridSynchAADL

Model

Requirement

OSATE Result View

Code
Generation

Constraint
Checking Rewriting

Logic
Model

Formal Analysis
Symbolic Reachability

Randomized Simulation

• OSATE plug-in

• Provide an intuitive language to specify properties of models

• Check if a given model is a valid HybridSynchAADL model

• Use OSATE’s code generation facilities to synthesize a Maude model

• Invoke Maude and Yices2 to perform formal analysis

20

The HybridSynchAADL Tool

The HybridSynchAADL Tool
HybridSynchAADL

Model

Requirement

OSATE Result View

Code
Generation

Constraint
Checking Rewriting

Logic
Model

Formal Analysis
Symbolic Reachability

Randomized Simulation

• OSATE plug-in

• Provide an intuitive language to specify properties of models

• Check if a given model is a valid HybridSynchAADL model

• Use OSATE’s code generation facilities to synthesize a Maude model

• Invoke Maude and Yices2 to perform formal analysis

20

The HybridSynchAADL Tool

The HybridSynchAADL Tool
HybridSynchAADL

Model

Requirement

OSATE Result View

Code
Generation

Constraint
Checking Rewriting

Logic
Model

Formal Analysis
Symbolic Reachability

Randomized Simulation

• OSATE plug-in

• Provide an intuitive language to specify properties of models

• Check if a given model is a valid HybridSynchAADL model

• Use OSATE’s code generation facilities to synthesize a Maude model

• Invoke Maude and Yices2 to perform formal analysis

20

The HybridSynchAADL Tool

The HybridSynchAADL Tool
HybridSynchAADL

Model

Requirement

OSATE Result View

Code
Generation

Constraint
Checking Rewriting

Logic
Model

Formal Analysis
Symbolic Reachability

Randomized Simulation

• OSATE plug-in

• Provide an intuitive language to specify properties of models

• Check if a given model is a valid HybridSynchAADL model

• Use OSATE’s code generation facilities to synthesize a Maude model

• Invoke Maude and Yices2 to perform formal analysis

20

The HybridSynchAADL Tool

The HybridSynchAADL Tool
HybridSynchAADL

Model

Requirement

OSATE Result View

Code
Generation

Constraint
Checking Rewriting

Logic
Model

Formal Analysis
Symbolic Reachability

Randomized Simulation

• OSATE plug-in

• Provide an intuitive language to specify properties of models

• Check if a given model is a valid HybridSynchAADL model

• Use OSATE’s code generation facilities to synthesize a Maude model

• Invoke Maude and Yices2 to perform formal analysis

20

Case Study: Collaborating Autonomous Drones

• Collaborate to achieve common goals (e.g., rendezvous, formation, . . .)

• Continuous dynamics of each drone

˙⃗x = v⃗ (position x⃗ , velocity v⃗)

• Controller of each drone

• determines the velocity v⃗ according to the status of the other drones

21

Case Study: Collaborating Autonomous Drones

• Collaborate to achieve common goals (e.g., rendezvous, formation, . . .)

• Continuous dynamics of each drone

˙⃗x = v⃗ (position x⃗ , velocity v⃗)

• Controller of each drone

• determines the velocity v⃗ according to the status of the other drones

21

Case Study: Collaborating Autonomous Drones

• Collaborate to achieve common goals (e.g., rendezvous, formation, . . .)

• Continuous dynamics of each drone

˙⃗x = v⃗ (position x⃗ , velocity v⃗)

• Controller of each drone

• determines the velocity v⃗ according to the status of the other drones

21

Example: Rendezvous of Four Distributed Drones

• Each drone communicates with two other drones

FourDronesSystem

Drone1 Drone2 Drone3 Drone4

• A drone component consists of an environment and its controller

Drone

Environment Controller
~x

<latexit sha1_base64="1BXJDaX2rm10Ymz/ZPwn4wBW4M0=">AAACNXicbZDNSsNAFIUn9a/Wv1Y3gptgEVxISaSiy6IblxXsD7ShTCbTdugkE2ZuSkPoQ7jVB/FZXLgTt76CkzQLbXtg4HC+e+HOcUPOFFjWh1HY2Nza3inulvb2Dw6PypXjthKRJLRFBBey62JFOQtoCxhw2g0lxb7LacedPKS8M6VSMRE8QxxSx8ejgA0ZwaCjTn9KSTKbD8pVq2ZlMleNnZsqytUcVIzTvidI5NMACMdK9WwrBCfBEhjhdF7qR4qGmEzwiPa0DbBP1ZU3ZaHKrJPMstvn5oWmnjkUUr8AzCz9u51gX6nYd/Wkj2GsllkarmUKfCxj6a2FaQJCcLWO9iIY3jkJC8IIaEAWNw4jboIw0w5Nj0lKgMfaYCKZ/rJJxlhiArpp3aW93NyqaV/X7Hrt5qlebdznrRbRGTpHl8hGt6iBHlETtRBBE/SCXtGb8W58Gl/G92K0YOQ7J+ifjJ9falSsVA==</latexit>

~v

<latexit sha1_base64="0RddcuPTuhF0h1sSzcDvX70cOsQ=">AAACNXicbZDNSsNAFIUn/tb61+pGcBMsggspiVR0WXTjsoL9gTaUyWTSDp1kwsxNsIQ+hFt9EJ/FhTtx6ys4SbPQtgcGDue7F+4cN+JMgWV9GGvrG5tb26Wd8u7e/sFhpXrUUSKWhLaJ4EL2XKwoZyFtAwNOe5GkOHA57bqT+4x3EyoVE+ETTCPqBHgUMp8RDDrqDhJK0mQ2rNSsupXLXDZ2YWqoUGtYNU4GniBxQEMgHCvVt60InBRLYITTWXkQKxphMsEj2tc2xAFVl17CIpVbJ33Ob5+Z55p6pi+kfiGYefp3O8WBUtPA1ZMBhrFaZFm4kikIsJxKbyXMEhCCq1W0H4N/66QsjGKgIZnf6MfcBGFmHZoek5QAn2qDiWT6yyYZY4kJ6KZ1l/Zic8umc1W3G/Xrx0ateVe0WkKn6AxdIBvdoCZ6QC3URgRN0At6RW/Gu/FpfBnf89E1o9g5Rv9k/PwCZrysUg==</latexit>

out

in

22

Example: Rendezvous of Four Distributed Drones

• Each drone communicates with two other drones

FourDronesSystem

Drone1 Drone2 Drone3 Drone4

• A drone component consists of an environment and its controller

Drone

Environment Controller
~x

<latexit sha1_base64="1BXJDaX2rm10Ymz/ZPwn4wBW4M0=">AAACNXicbZDNSsNAFIUn9a/Wv1Y3gptgEVxISaSiy6IblxXsD7ShTCbTdugkE2ZuSkPoQ7jVB/FZXLgTt76CkzQLbXtg4HC+e+HOcUPOFFjWh1HY2Nza3inulvb2Dw6PypXjthKRJLRFBBey62JFOQtoCxhw2g0lxb7LacedPKS8M6VSMRE8QxxSx8ejgA0ZwaCjTn9KSTKbD8pVq2ZlMleNnZsqytUcVIzTvidI5NMACMdK9WwrBCfBEhjhdF7qR4qGmEzwiPa0DbBP1ZU3ZaHKrJPMstvn5oWmnjkUUr8AzCz9u51gX6nYd/Wkj2GsllkarmUKfCxj6a2FaQJCcLWO9iIY3jkJC8IIaEAWNw4jboIw0w5Nj0lKgMfaYCKZ/rJJxlhiArpp3aW93NyqaV/X7Hrt5qlebdznrRbRGTpHl8hGt6iBHlETtRBBE/SCXtGb8W58Gl/G92K0YOQ7J+ifjJ9falSsVA==</latexit>

~v

<latexit sha1_base64="0RddcuPTuhF0h1sSzcDvX70cOsQ=">AAACNXicbZDNSsNAFIUn/tb61+pGcBMsggspiVR0WXTjsoL9gTaUyWTSDp1kwsxNsIQ+hFt9EJ/FhTtx6ys4SbPQtgcGDue7F+4cN+JMgWV9GGvrG5tb26Wd8u7e/sFhpXrUUSKWhLaJ4EL2XKwoZyFtAwNOe5GkOHA57bqT+4x3EyoVE+ETTCPqBHgUMp8RDDrqDhJK0mQ2rNSsupXLXDZ2YWqoUGtYNU4GniBxQEMgHCvVt60InBRLYITTWXkQKxphMsEj2tc2xAFVl17CIpVbJ33Ob5+Z55p6pi+kfiGYefp3O8WBUtPA1ZMBhrFaZFm4kikIsJxKbyXMEhCCq1W0H4N/66QsjGKgIZnf6MfcBGFmHZoek5QAn2qDiWT6yyYZY4kJ6KZ1l/Zic8umc1W3G/Xrx0ateVe0WkKn6AxdIBvdoCZ6QC3URgRN0At6RW/Gu/FpfBnf89E1o9g5Rv9k/PwCZrysUg==</latexit>

out

in

22

Example: System Architecture in HybridSynchAADL (1)

• A top-level system component (a subset of AADL)

system implementation FourDronesSystem.impl

subcomponents

drones: system Drone::Drone.impl; dr2: system Drone::Drone.impl;

dr3: system Drone::Drone.impl; dr4: system Drone::Drone.impl;

connections

C1: port dr1.oX -> dr2.iX; C2: port dr1.oY -> dr2.iY;

C3: port dr2.oX -> dr3.iX; C4: port dr2.oY -> dr3.iY;

C5: port dr3.oX -> dr4.iX; C6: port dr3.oY -> dr4.iY;

C7: port dr4.oX -> dr1.iX; C8: port dr4.oY -> dr1.iY;

properties

Timing => Delayed applies to C1, C2, C3, C4, C5, C6, C7, C8;

Period => 100ms;

Hybrid_SynchAADL::Synchronous => true;

Hybrid_SynchAADL::Max_Clock_Deviation => 10ms;

end FourDrones.impl;

HybridSynchAADL annotations

23

Example: System Architecture in HybridSynchAADL (1)

• A top-level system component (a subset of AADL)

system implementation FourDronesSystem.impl

subcomponents

drones: system Drone::Drone.impl; dr2: system Drone::Drone.impl;

dr3: system Drone::Drone.impl; dr4: system Drone::Drone.impl;

connections

C1: port dr1.oX -> dr2.iX; C2: port dr1.oY -> dr2.iY;

C3: port dr2.oX -> dr3.iX; C4: port dr2.oY -> dr3.iY;

C5: port dr3.oX -> dr4.iX; C6: port dr3.oY -> dr4.iY;

C7: port dr4.oX -> dr1.iX; C8: port dr4.oY -> dr1.iY;

properties

Timing => Delayed applies to C1, C2, C3, C4, C5, C6, C7, C8;

Period => 100ms;

Hybrid_SynchAADL::Synchronous => true;

Hybrid_SynchAADL::Max_Clock_Deviation => 10ms;

end FourDrones.impl;

drone components

HybridSynchAADL annotations

23

Example: System Architecture in HybridSynchAADL (1)

• A top-level system component (a subset of AADL)

system implementation FourDronesSystem.impl

subcomponents

drones: system Drone::Drone.impl; dr2: system Drone::Drone.impl;

dr3: system Drone::Drone.impl; dr4: system Drone::Drone.impl;

connections

C1: port dr1.oX -> dr2.iX; C2: port dr1.oY -> dr2.iY;

C3: port dr2.oX -> dr3.iX; C4: port dr2.oY -> dr3.iY;

C5: port dr3.oX -> dr4.iX; C6: port dr3.oY -> dr4.iY;

C7: port dr4.oX -> dr1.iX; C8: port dr4.oY -> dr1.iY;

properties

Timing => Delayed applies to C1, C2, C3, C4, C5, C6, C7, C8;

Period => 100ms;

Hybrid_SynchAADL::Synchronous => true;

Hybrid_SynchAADL::Max_Clock_Deviation => 10ms;

end FourDrones.impl;

network connections

HybridSynchAADL annotations

23

Example: System Architecture in HybridSynchAADL (1)

• A top-level system component (a subset of AADL)

system implementation FourDronesSystem.impl

subcomponents

drones: system Drone::Drone.impl; dr2: system Drone::Drone.impl;

dr3: system Drone::Drone.impl; dr4: system Drone::Drone.impl;

connections

C1: port dr1.oX -> dr2.iX; C2: port dr1.oY -> dr2.iY;

C3: port dr2.oX -> dr3.iX; C4: port dr2.oY -> dr3.iY;

C5: port dr3.oX -> dr4.iX; C6: port dr3.oY -> dr4.iY;

C7: port dr4.oX -> dr1.iX; C8: port dr4.oY -> dr1.iY;

properties

Timing => Delayed applies to C1, C2, C3, C4, C5, C6, C7, C8;

Period => 100ms;

Hybrid_SynchAADL::Synchronous => true;

Hybrid_SynchAADL::Max_Clock_Deviation => 10ms;

end FourDrones.impl;

HybridSynchAADL annotations

23

Example: System Architecture in HybridSynchAADL (2)

• A drone component (a subset of AADL)

system Drone

features

iX: in data port Base_Types::Float; iY: in data port Base_Types::Float;

oX: out data port Base_Types::Float; oY: out data port Base_Types::Float;

end Drone;

system implementation Drone.impl

subcomponents

ctl: system DroneControl::DroneControl.impl;

env: system Environment::Environment.impl;

connections

C1: port ctl.oX -> oX; C2: port ctl.oY -> oY; C3: port iX -> ctl.iX;

C4: port iY -> ctl.iY; C5: port ctl.vX -> env.vX; C6: port ctl.vY -> env.vY;

C7: port env.cX -> ctl.cX; C8: port env.cY -> ctl.cY;

properties

Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms;

Hybrid_SynchAADL::Response_Time => 6ms .. 9ms;

end Drone.impl;

HybridSynchAADL annotations

for environment interactions

24

Example: System Architecture in HybridSynchAADL (2)

• A drone component (a subset of AADL)

system Drone

features

iX: in data port Base_Types::Float; iY: in data port Base_Types::Float;

oX: out data port Base_Types::Float; oY: out data port Base_Types::Float;

end Drone;

system implementation Drone.impl

subcomponents

ctl: system DroneControl::DroneControl.impl;

env: system Environment::Environment.impl;

connections

C1: port ctl.oX -> oX; C2: port ctl.oY -> oY; C3: port iX -> ctl.iX;

C4: port iY -> ctl.iY; C5: port ctl.vX -> env.vX; C6: port ctl.vY -> env.vY;

C7: port env.cX -> ctl.cX; C8: port env.cY -> ctl.cY;

properties

Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms;

Hybrid_SynchAADL::Response_Time => 6ms .. 9ms;

end Drone.impl;

HybridSynchAADL annotations

for environment interactions

24

Example: System Architecture in HybridSynchAADL (2)

• A drone component (a subset of AADL)

system Drone

features

iX: in data port Base_Types::Float; iY: in data port Base_Types::Float;

oX: out data port Base_Types::Float; oY: out data port Base_Types::Float;

end Drone;

system implementation Drone.impl

subcomponents

ctl: system DroneControl::DroneControl.impl;

env: system Environment::Environment.impl;

connections

C1: port ctl.oX -> oX; C2: port ctl.oY -> oY; C3: port iX -> ctl.iX;

C4: port iY -> ctl.iY; C5: port ctl.vX -> env.vX; C6: port ctl.vY -> env.vY;

C7: port env.cX -> ctl.cX; C8: port env.cY -> ctl.cY;

properties

Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms;

Hybrid_SynchAADL::Response_Time => 6ms .. 9ms;

end Drone.impl;

HybridSynchAADL annotations

for environment interactions

24

Example: System Architecture in HybridSynchAADL (2)

• A drone component (a subset of AADL)

system Drone

features

iX: in data port Base_Types::Float; iY: in data port Base_Types::Float;

oX: out data port Base_Types::Float; oY: out data port Base_Types::Float;

end Drone;

system implementation Drone.impl

subcomponents

ctl: system DroneControl::DroneControl.impl;

env: system Environment::Environment.impl;

connections

C1: port ctl.oX -> oX; C2: port ctl.oY -> oY; C3: port iX -> ctl.iX;

C4: port iY -> ctl.iY; C5: port ctl.vX -> env.vX; C6: port ctl.vY -> env.vY;

C7: port env.cX -> ctl.cX; C8: port env.cY -> ctl.cY;

properties

Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms;

Hybrid_SynchAADL::Response_Time => 6ms .. 9ms;

end Drone.impl;

HybridSynchAADL annotations

for environment interactions

24

Example: Discrete Controller in HybridSynchAADL

• A thread component for a drone controller (AADL’s Behavior Annex)

thread implementation DroneControlThread.impl

subcomponents

cls: data Base_Types::Boolean;

annex behavior_specification {**

variables

nx: Base_Types::Float; ny: Base_Types::Float;

states

s1: initial complete state; s2, s3: state;

transitions

s1 -[on dispatch]-> s2;

s2 -[abs(cX - iX) < 0.1 and abs(cY - iY) < 0.1]-> s3 {

vX := 0; vY := 0; cls := true };

s2 -[otherwise]-> s3 {

nx := -1 * (cX - iX); ny := -1 * (cY - iY);

...

};

s3 -[]-> s1 { oX := cX; oY := cY }; **};

end DroneControlThread.impl;

25

Example: Environment Component in HybridSynchAADL

• An environment component

system Environment

features

cX: out data port Base_Types::Float; cY: out data port Base_Types::Float;

vX: in data port Base_Types::Float; vY: in data port Base_Types::Float;

properties

Hybrid_SynchAADL::isEnvironment => true;

end Environment;

system implementation Environment.impl

subcomponents

x: data Base_Types::Float; velx: data Base_Types::Float;

y: data Base_Types::Float; vely: data Base_Types::Float;

connections

C1: port x -> cX; C2: port y -> cY; C3: port vX -> velx; C4: port vY -> vely;

properties

Hybrid_SynchAADL::ContinuousDynamics =>

"x(t) = 0.001 * velx * t + x(0);

y(t) = 0.001 * vely * t + y(0);";

end Environment.impl;
26

Example: Environment Component in HybridSynchAADL

• An environment component

system Environment

features

cX: out data port Base_Types::Float; cY: out data port Base_Types::Float;

vX: in data port Base_Types::Float; vY: in data port Base_Types::Float;

properties

Hybrid_SynchAADL::isEnvironment => true;

end Environment;

system implementation Environment.impl

subcomponents

x: data Base_Types::Float; velx: data Base_Types::Float;

y: data Base_Types::Float; vely: data Base_Types::Float;

connections

C1: port x -> cX; C2: port y -> cY; C3: port vX -> velx; C4: port vY -> vely;

properties

Hybrid_SynchAADL::ContinuousDynamics =>

"x(t) = 0.001 * velx * t + x(0);

y(t) = 0.001 * vely * t + y(0);";

end Environment.impl;

HybridSynchAADL annotation

HybridSynchAADL annotation

for continuous dynamics

26

Example: Specifying Properties in HybridSynchAADL

• Two properties of FourDronesSystem

• safety: drones do not collide

• rendezvous: all drones can eventually gather together

invariant [safety]: ?initial ==> not ?collision in time 500;

reachability [rendezvous]: ?initial ==> ?gather in time 500;

• Propositions as AADL Boolean expressions, e.g.,

proposition [initial] :

abs(dr1.env.x - 1.1) < 0.01 and abs(dr1.env.y - 1.5) < 0.01 and

abs(dr2.env.x + 1.5) < 0.01 and abs(dr2.env.y + 1.1) < 0.01 and

abs(dr3.env.x - 1.5) < 0.01 and abs(dr3.env.y - 1.1) < 0.01 and

abs(dr4.env.x + 1.1) < 0.01 and abs(dr4.env.y + 1.5) < 0.01;

27

Example: Specifying Properties in HybridSynchAADL

• Two properties of FourDronesSystem

• safety: drones do not collide

• rendezvous: all drones can eventually gather together

invariant [safety]: ?initial ==> not ?collision in time 500;

reachability [rendezvous]: ?initial ==> ?gather in time 500;

• Propositions as AADL Boolean expressions, e.g.,

proposition [initial] :

abs(dr1.env.x - 1.1) < 0.01 and abs(dr1.env.y - 1.5) < 0.01 and

abs(dr2.env.x + 1.5) < 0.01 and abs(dr2.env.y + 1.1) < 0.01 and

abs(dr3.env.x - 1.5) < 0.01 and abs(dr3.env.y - 1.1) < 0.01 and

abs(dr4.env.x + 1.1) < 0.01 and abs(dr4.env.y + 1.5) < 0.01;

27

Example: Specifying Properties in HybridSynchAADL

• Two properties of FourDronesSystem

• safety: drones do not collide

• rendezvous: all drones can eventually gather together

invariant [safety]: ?initial ==> not ?collision in time 500;

reachability [rendezvous]: ?initial ==> ?gather in time 500;

• Propositions as AADL Boolean expressions, e.g.,

proposition [initial] :

abs(dr1.env.x - 1.1) < 0.01 and abs(dr1.env.y - 1.5) < 0.01 and

abs(dr2.env.x + 1.5) < 0.01 and abs(dr2.env.y + 1.1) < 0.01 and

abs(dr3.env.x - 1.5) < 0.01 and abs(dr3.env.y - 1.1) < 0.01 and

abs(dr4.env.x + 1.1) < 0.01 and abs(dr4.env.y + 1.5) < 0.01;

27

The HybridSynchAADL Tool: Example

28

The HybridSynchAADL Tool: Example

28

The HybridSynchAADL Tool: Example

28

The HybridSynchAADL Tool: Example

29

The HybridSynchAADL Tool: Example

29

The HybridSynchAADL Tool: Example

30

The HybridSynchAADL Tool: Example

30

The HybridSynchAADL Tool: Example

31

Summary

Goal

Enable automated formal analysis for domain-specific modeling of virtually

synchronous CPSs

• HybridSynchAADL modeling language
• models synchronous designs in AADL

• easy-to-use for CPS developers

• HybridSynchAADL tool
• design and automatic formal analysis inside OSATE

• symbolic reachability analysis using Maude and SMT

• Hybrid PALS
• reduces the design and verification complexity

• synchronizer for virtually synchronous CPSs with continuous dynamics

32

Summary

Goal

Enable automated formal analysis for domain-specific modeling of virtually

synchronous CPSs

• HybridSynchAADL modeling language
• models synchronous designs in AADL

• easy-to-use for CPS developers

• HybridSynchAADL tool
• design and automatic formal analysis inside OSATE

• symbolic reachability analysis using Maude and SMT

• Hybrid PALS
• reduces the design and verification complexity

• synchronizer for virtually synchronous CPSs with continuous dynamics

32

Summary

Goal

Enable automated formal analysis for domain-specific modeling of virtually

synchronous CPSs

• HybridSynchAADL modeling language
• models synchronous designs in AADL

• easy-to-use for CPS developers

• HybridSynchAADL tool
• design and automatic formal analysis inside OSATE

• symbolic reachability analysis using Maude and SMT

• Hybrid PALS
• reduces the design and verification complexity

• synchronizer for virtually synchronous CPSs with continuous dynamics

32

Summary

Goal

Enable automated formal analysis for domain-specific modeling of virtually

synchronous CPSs

• HybridSynchAADL modeling language
• models synchronous designs in AADL

• easy-to-use for CPS developers

• HybridSynchAADL tool
• design and automatic formal analysis inside OSATE

• symbolic reachability analysis using Maude and SMT

• Hybrid PALS
• reduces the design and verification complexity

• synchronizer for virtually synchronous CPSs with continuous dynamics

32

Thank you!

32

	Modeling Language
	Formal Semantics
	Complexity Reduction
	Tool and Case Study

