
BLESS Behavior Correctness Proof as Convincing
Verification Artifact

Brian R Larson
brl@multitude.net

Ehsan Ahmad
e.ahmad@seu.edu.sa

June 16, 2023

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 1 / 26



BLESS Methodology

The BLESS Methodology applies to an
architectural model of a cyber-physical
system using the Architecture Analysis and
Design Language (AADL).

The BLESS Methodology creates programs
together with deductive proofs that every
possible program execution will conform to
its specification.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 2 / 26



What is Proof?

Colloquially, “proof” usually means “evidence”, with perhaps some
reasoning about it.

Proof is (or should be) an argument to convince people of its
conclusion.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 3 / 26



What is Proof? Deductive Proof

A deductive proof is a sequence of theorems, each of which is given,
or an axiom, or derived from theorems in the sequence by some
reason.

The last theorem is the conclusion: what is being proved.

When

the axioms have been proved (by some other means) to be
tautology (always true),

the reasons are inference rules proved to be sound (derive true
facts from true facts), and

the givens appropriately describe the subject of the argument,

people can decide if they believe the conclusion and with what
confidence.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 4 / 26



What is Proof? BLESS Proofs

BLESS proofs are deductive proofs that every possible program
execution conforms to its specification.

For an AADL architecture, atomic component behaviors are proved to
meet their specifications, and composite components are proved from
the specifications and interconnection of their subcomponents.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 5 / 26



CTCS-3

Chinese Train Control System Level 3
(CTCS-3) Movement Authority scenario
allows trains to move only when they have
been given a movement authorization (MA)
for a specific length of track which is divided
into segments.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 6 / 26



CTCS-3

A train operator normally controls the
acceleration (and thus speed) of the train.
For safety, the train’s service brake is
automatically applied if the train velocity
exceeds a safe limit, Vs for the train’s current
segment of its MA.
If the service brake fails so that the train
velocity exceeds Ve, the emergency brake is
automatically applied.
If the next segment has lower velocity limits,
automatic braking may applied (dotted
curves).

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 7 / 26



AADL AutoBrake.i

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 8 / 26



Behavior Specification Feature Properties

AADL properties of features (ports) declaratively specify
behavior.� �
thread AutoBrake
features
sb: out event data port BLESS_Types::Boolean -- apply service brake
{BLESS::Assertion => "<<SB() and not EB()>>";};
eb: out event data port BLESS_Types::Boolean -- apply emergency brake
{BLESS::Assertion => "<<EB()>>";};
r: out event port; -- request new movement authorization (MA)
m_a: in event data port CTCS_Types::movementAuthorization -- received MA
{BLESS::Value => "<<returns movementAuthorization := RMA>>";};
p: in event data port CTCS_Types::Position -- current measured position
{BLESS::Value => "<<returns quantity m := POSITION>>";};
v: in event data port CTCS_Types::Velocity -- current measured velocity
{BLESS::Value => "<<returns quantity mps := VELOCITY>>";};
xl : in data port CTCS_Types::Acceleration --operator chosen acceleration
{BLESS::Value => "<<returns quantity mpss := OPERATOR_XL>>";};
ca : out data port CTCS_Types::Acceleration --acceleration to motor
{BLESS::Value => "<<returns quantity mpss := TRAIN_XL()>>";};
properties
Dispatch_Protocol => Sporadic;

end AutoBrake;� �

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 9 / 26



Behavior Specification Labelled Assertions

Labelled assertions may be used to shorten predicates.� �
<<SB: : --apply service brake
v >= iSeg.v_n or v*v >= nSeg.v_n*nSeg.v_n + 2*b*(iSeg.e-p)>>

<<EB: : --apply emergency brake
v >= iSeg.v_e or v*v >= nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p)>>� �

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 10 / 26



Behavior Implementation State-Transition Machines

For threads, BLESS state-transition machines are deliberately similar
to the Behavior Annex (BA) sublanguage of AADL.

Both have

persistent local variables

states: initial, final, complete, and execution

transitions: dispatch conditions leaving complete state, boolean
expressions otherwise

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 11 / 26



Behavior Implementation States

Each state may have an assertion of what is true about the system
when in that state.� �
states
Start: initial state --train stopped
WaitFirstMA: complete state --Wait for first MA
CheckFirstMA: state -- Check first MA
MoveForward: complete state --Move Forward
<< i<CMA.num_segments and iSeg=CMA.seg[i] and nSeg=CMA.seg[i + 1] and ma=CMA>>

CheckMoveForward: state --Check Move Forward
<< i<CMA.num_segments and iSeg=CMA.seg[i] and nSeg=CMA.seg[i + 1] and ma=CMA>>

CheckForLastSegment: state --check for last segment
<< iSeg = CMA.seg[i] and ma=CMA >>

MoveForwardLastSegment: complete state --Move Forward Last Segment, no new MA
<< i=CMA.num_segments and iSeg=CMA.seg[i] and nSeg=NULL_SEGMENT() and ma=CMA>>

CheckMoveForwardLastSegment: state --check move forward last segment, no new MA
<< i=CMA.num_segments and iSeg=CMA.seg[i] and nSeg=NULL_SEGMENT() and ma=CMA>>

GotNewMA: complete state --on last segment, got new MA
<< i=CMA.num_segments and iSeg=CMA.seg[i] and nSeg=NEXT_MA.seg[1] and ma=CMA
and next_ma=NEXT_MA >>

CheckMATransition: state --change to new MA?
<< i=CMA.num_segments and iSeg=CMA.seg[i] and nSeg=NEXT_MA.seg[1] and ma=CMA
and next_ma=NEXT_MA >>

FAIL: final state --failure occurred� �
Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 12 / 26



Behavior Implementation Transitions

Requesting a movement authorization, and starting to move when
received:� �
transitions
Go: --request movement authorization
Start -[]-> WaitFirstMA { r! }

FirstMA: --dispatch before first MA
WaitFirstMA -[on dispatch p]-> CheckFirstMA

NotYet: --did not get requested movement authorization
CheckFirstMA -[not m_a’fresh]-> WaitFirstMA

GotFirstMA: --received movement authorization
CheckFirstMA -[m_a’fresh]-> MoveForward
{ << AXIOM_CMA_IS_RMA() >>
m_a?(ma) --save received movement authorization
; << ma=CMA >>
i := 1 --first segment of new movement authorization
; << i=1 and ma=CMA >>
iSeg := ma.seg[1] --set current segment to first segment
; << i=1 and ma=CMA and iSeg=CMA.seg[i]

and AXIOM_NUM_SEG(ma:ma) >>
nSeg := ma.seg[2] --set next segment to second segment
<< i=1 and ma=CMA and iSeg=CMA.seg[i]

and nSeg=CMA.seg[i+1] and AXIOM_NUM_SEG(ma:CMA) >>
}� �

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 13 / 26



Behavior Implementation Transitions

Automatic braking:� �
CheckSpeed:
MoveForward -[on dispatch p]-> CheckMoveForward
{ << i<CMA.num_segments and iSeg=CMA.seg[i]

and nSeg=CMA.seg[i + 1] and ma=CMA and AXIOM_B()
and AXIOM_E() and AXIOM_V(seg:iSeg)
and AXIOM_V(seg:nSeg) >>

if --exceed emergency brake velocity?
(v >= iSeg.v_e )~>
{ eb!(true) & sb!(false) & ca!(0 mpss) }

[] --emergency brake for next segment?
(v*v >= nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p) )~>
{ eb!(true) & sb!(false) & ca!(0 mpss) }

[] --exceed service brake velocity?
(v >= iSeg.v_n and v < iSeg.v_e and
v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p) )~>
{ sb!(true) & eb!(false) & ca!(0 mpss) }

[] --service brake for next segment?
(v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p)

and v < iSeg.v_e
and v*v >= nSeg.v_n*nSeg.v_n + 2*b*(iSeg.e-p) )~>

{ sb!(true) & eb!(false) & ca!(0 mpss) }
[] --no auto brake needed

( v < iSeg.v_n
and v*v < nSeg.v_n*nSeg.v_n + 2*b*(iSeg.e-p)
and v*v < nSeg.v_e*nSeg.v_e + 2*e*(iSeg.e-p) )~>

{ sb!(false) & eb!(false) & ca!(xl) }
fi
}� �

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 14 / 26



Verification Conditions Hoare Triples

For a sequential program S, beginning with predicate P being true
applied to program variables, will terminate with predicate Q being true
applied to program variables has been traditionally represented as a
Hoare triple:

{P} S {Q}

Because in BLESS state-transition machines, curly brackets are used
for action grouping, the verification condition for S is expressed
as:

≪P≫ S ≪Q≫

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 15 / 26



Verification Conditions States

Each non-final state has a verification condition.

Assertions of complete states must imply the thread’s invariant.

Assertions of initial and execution states must imply the disjunction of
conditions of outgoing transitions.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 16 / 26



Verification Conditions Transitions

Each transition in a BLESS state machine has a verification
condition:

≪P ∧ b≫ S ≪Q≫

where P is the assertion of the source state, Q is the assertion of the
destination state, b is the transition condition, and S is the action of the
transition.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 17 / 26



Proof

The proof of AutoBrake.i has 658 theorems.

Each theorem says which axiom or inference rule is the reason it’s
true.

The last theorem says all the verification conditions have been
proved.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 18 / 26



Proof Last Theorem� �
Theorem (658) [serial 1002]
P [33] << >>
S [39] ->
Q [33] << AutoBrake.i proof obligations >>
Why created: Initial proof obligations for AutoBrake.i
Solved by: Component verification conditions
and theorems 1 2 3 5 9 11 12 15 17 21 25 26 27 106 313 315 322 332 357 358 549

550 593 595 596 657:
Theorem (1) [serial 1003] used for:

<<M(MoveForwardLastSegment)>> -> <<I>> from invariant I when complete state
MoveForwardLastSegment has Assertion <<M(MoveForwardLastSegment)>>
in its definition.

Theorem (2) [serial 1004] used for:
<<M(WaitFirstMA)>> -> <<I>> from invariant I when complete state WaitFirstMA
has Assertion <<M(WaitFirstMA)>> in its definition.

Theorem (3) [serial 1005] used for:
<<M(MoveForward)>> -> <<I>> from invariant I when complete state MoveForward
has Assertion <<M(MoveForward)>> in its definition.

Theorem (5) [serial 1006] used for:
<<M(GotNewMA)>> -> <<I>> from invariant I when complete state GotNewMA
has Assertion <<M(GotNewMA)>> in its definition.

Theorem (9) [serial 1007] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
CheckMoveForward, <<M(CheckMoveForward)>> -> <<e1 or e2 or . . . en>>

Theorem (11) [serial 1008] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
CheckMoveForwardLastSegment,
<<M(CheckMoveForwardLastSegment)>> -> <<e1 or e2 or . . . en>>

Theorem (12) [serial 1009] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
Start, <<M(Start)>> -> <<e1 or e2 or . . . en>>

Theorem (15) [serial 1010] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
CheckForLastSegment, <<M(CheckForLastSegment)>> -> <<e1 or e2 or . . . en>>� �

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 19 / 26



Proof Last Theorem� �
Theorem (17) [serial 1011] used for:

Serban’s Theorem: disjunction of execute conditions leaving execution state
CheckFirstMA, <<M(CheckFirstMA)>> -> <<e1 or e2 or . . . en>>

Theorem (21) [serial 1012] used for:
Serban’s Theorem: disjunction of execute conditions leaving execution state
CheckMATransition, <<M(CheckMATransition)>> -> <<e1 or e2 or . . . en>>

Theorem (25) [serial 1013] used for:
<<M(Start)>> A <<M(WaitFirstMA)>> for GoStart-[ ]->WaitFirstMA{A};

Theorem (26) [serial 1014] used for:
<<M(WaitFirstMA) and x>> -> <<M(CheckFirstMA)>> for
FirstMAWaitFirstMA-[x]->CheckFirstMA{};

Theorem (27) [serial 1015] used for:
<<M(CheckFirstMA) and x>> -> <<M(WaitFirstMA)>> for
NotYetCheckFirstMA-[x]->WaitFirstMA{};

Theorem (106) [serial 1016] used for:
<<M(CheckFirstMA) and x>> A <<M(MoveForward)>> for
GotFirstMACheckFirstMA-[x]->MoveForward{A};

Theorem (313) [serial 1017] used for:
<<M(MoveForward) and x>> A <<M(CheckMoveForward)>> for
CheckSpeedMoveForward-[x]->CheckMoveForward{A};

Theorem (315) [serial 1018] used for:
<<M(CheckMoveForward) and x>> -> <<M(MoveForward)>> for
SameSegmentCheckMoveForward-[x]->MoveForward{};

Theorem (322) [serial 1019] used for:
<<M(CheckMoveForward) and x>> A <<M(CheckForLastSegment)>> for
NextSegmentCheckMoveForward-[x]->CheckForLastSegment{A};

Theorem (332) [serial 1020] used for:
<<M(CheckForLastSegment) and x>> A <<M(MoveForward)>> for
NotLastSegmentCheckForLastSegment-[x]->MoveForward{A};

Theorem (357) [serial 1021] used for:
<<M(CheckForLastSegment) and x>> A <<M(MoveForwardLastSegment)>> for
IsLastSegmentCheckForLastSegment-[x]->MoveForwardLastSegment{A};

Theorem (358) [serial 1022] used for:
<<M(CheckForLastSegment) and x>> -> <<M(FAIL)>> for
PastLastSegmentCheckForLastSegment-[x]->FAIL{};� �

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 20 / 26



Proof Last Theorem

� �
Theorem (549) [serial 1023] used for:

<<M(MoveForwardLastSegment) and x>> A <<M(CheckMoveForwardLastSegment)>> for
LastSegmentMoveForwardLastSegment-[x]->CheckMoveForwardLastSegment{A};

Theorem (550) [serial 1024] used for:
<<M(CheckMoveForwardLastSegment) and x>> -> <<M(MoveForwardLastSegment)>> for
NoMAYetCheckMoveForwardLastSegment-[x]->MoveForwardLastSegment{};

Theorem (593) [serial 1025] used for:
<<M(CheckMoveForwardLastSegment) and x>> A <<M(GotNewMA)>> for
GetNewMACheckMoveForwardLastSegment-[x]->GotNewMA{A};

Theorem (595) [serial 1026] used for:
<<M(GotNewMA) and x>> -> <<M(CheckMATransition)>> for
LastBitOfMaGotNewMA-[x]->CheckMATransition{};

Theorem (596) [serial 1027] used for:
<<M(CheckMATransition) and x>> -> <<M(GotNewMA)>> for
NotEndOfMACheckMATransition-[x]->GotNewMA{};

Theorem (657) [serial 1028] used for:
<<M(CheckMATransition) and x>> A <<M(MoveForward)>> for
StartNextMaCheckMATransition-[x]->MoveForward{A};� �

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 21 / 26



Proof GotFirstMA

� �
Theorem (106) [serial 1016]
P [85] << m_a’fresh >>
S [86] << AXIOM_CMA_IS_RMA() >>

m_a?(ma)
;
<< ma = CMA >>
i := 1
;
<< i = 1

and ma = CMA >>
iSeg := ma.seg[1]
;
<< i = 1

and ma = CMA
and iSeg = CMA.seg[i]
and AXIOM_NUM_SEG(ma : ma) >>

nSeg := ma.seg[2]
<< i = 1

and ma = CMA
and iSeg = CMA.seg[i]
and nSeg = CMA.seg[i + 1]
and AXIOM_NUM_SEG(ma : CMA) >>

Q [57] << i < CMA.num_segments
and iSeg = CMA.seg[i]
and nSeg = CMA.seg[i + 1]
and ma = CMA >>� �

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 22 / 26



Proof GotFirstMA

� �
Why created: <<M(CheckFirstMA) and x>> A <<M(MoveForward)>> for

GotFirstMA: CheckFirstMA-[x]->MoveForward{A};
Solved by: Sequential Composition Rule:

<<P1>> S1 <<Q1 and P2>>
<<Q1 and P2>> S2 <<Q2 and P3>>
. . .
<<Qk-1 and Pk>> Sk <<Qk>>
P=>P1, Qk=>Q
_____________________________________________
<<P>> S <<Q>>
where S is <<P1>> S1 <<Q1>> ; . . . ; <<Pk>> Sk <<Qk>>

and theorems 30 42 48 55 78 105:
Theorem (30) [serial 1069] used for:

<<P>> -> <<P1>> in sequential composition for [serial 1016]
Theorem (42) [serial 1070] used for:

<<Q4>> -> <<Q>> in sequential composition for [serial 1016]
Theorem (48) [serial 1071] used for:

<<P1>> S1 <<Q1 and P2>> in sequential composition for [serial 1016]
Theorem (55) [serial 1072] used for:

<<Q1 and P2>> S2 <<Q2 and P3>> in sequential composition for [serial 1016]
Theorem (78) [serial 1073] used for:

<<Q2 and P3>> S3 <<Q3 and P4>> in sequential composition for [serial 1016]
Theorem (105) [serial 1074] used for:

<<Q3 and P4>> S4 <<Q4>> in sequential composition for [serial 1016]� �

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 23 / 26



Reasons for Doubt

Contention that a proof is a convincing argument for its conclusion
should honestly state reasons for doubt.

We claim that a given deductive proof means that BLESS behavior
meets its specification for every possible execution.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 24 / 26



Reasons for Doubt

1 The executable code generated from the state machine may be
incorrect.

2 The set of verification conditions generated for a state machine
may be incorrect or incomplete.

3 The formal semantics of the BLESS language may be incorrect (or
implemented incorrectly).

4 The built-in axioms may not be tautologies (or implemented
incorrectly).

5 User-defined axioms (really givens) may be incorrect or
inappropriate.

6 The inference rules may not be sound (or implemented
incorrectly).

7 The specification of state machine behavior may be incorrect or
incomplete.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 25 / 26



Summary

Verification artifacts should be persuasive arguments understood by
people.

Don’t need to trust the tool; proofs should be self-evident regardless of
how they were constructed.

Must be honest about what is verified, and reasons for doubt.

BLESS correctness proofs (try to) meet these criteria.

Brian R Larson and Ehsan Ahmad BLESS Proof as Convincing Artifact June 16, 2023 26 / 26


	BLESS Methodology
	What is Proof?
	Deductive Proof
	BLESS Proofs

	CTCS-3
	AADL
	AutoBrake.i

	Behavior Specification
	Feature Properties
	Labelled Assertions

	Behavior Implementation
	State-Transition Machines
	States
	Transitions

	Verification Conditions
	Hoare Triples
	States
	Transitions

	Proof
	Last Theorem
	GotFirstMA

	Reasons for Doubt
	Summary

