

MODULAR MODEL-BASED DESIGN AND TESTING FOR APPLICATIONS IN SATELLITES

METASAT's Model-Based Design Solutions

Dr. Leonidas Kosmidis

Introduction

- Modern and upcoming space systems require increasing levels of computing power
- Traditional space processors cannot provide this performance level
- Need for higher performance hardware in space systems

METASAT Overview

- Modern aerospace systems require new, advanced functionalities
 - Artificial Intelligence (AI)
 - High Resolution Sensors
 - Optical communications
 - Advanced Robotics...
- Advanced functionalities require complex hardware and software compared to the existing space technologies
- High Performance Hardware technologies: Advanced Multi-cores, GPUs, AI accelerators
- Programming high performance hardware requires complex software: parallel and GPU programming

Model-Based Design

- Model-Based Design can reduce the development and verification time for these complex platforms
- Development can be assisted by high level design methods (models) from which code can be automatically generated
 - Correct-by-construction
 - Various levels of verification: model-in-the-loop, software-in-the-loop, processor-in-the-loop etc
 - Virtual platforms allow starting software development before the hardware is ready
 - Break the dependency between hardware and software development

Virtualisation

- Time and Space isolation provide benefits for faster and easier integration
- Components can be developed and tested in isolation
- Fault Detection, Isolation and Recovery (FDIR)

METASAT

- 2-year Horizon Europe project: January 2023-December 2024
- TRL 3-4

METASAT

- METASAT will rely on open source and standardized technologies
 - Maximise interoperability and avoid vendor lock-in
 - Facilitate the development of a space ecosystem
- ESA's TASTE Open Source Model Based Design framework, enhanced with code generation for high performance platforms such as GPUs
- Open Source Processor technologies such as NOEL-V RISC-V processors
 - Enhancement with AI processing acceleration capabilities
- Virtualisation support for GPUs and AI acceleration capabilities
 - Novel AI approaches for integration testing and FDIR

- Mixed Criticality Platform
- FPGA Prototype on a Xilinx VCU118
- Multicore CPU Based on NOEL-V + SPARROW AI SIMD Accelerator
 - Qualifiable software stack for high criticality software with moderate AI acceleration needs

METASA

- SPARROW AI SIMD Accelerator [1]
- High-performance, Low-cost at least 30% smaller than conventional vector processors with similar performance
- Minimal core modifications
 - incremental qualification
- Key features: reuse of integer register file, short SIMD unit (8-bit), swizzling, reductions
- Intrinsics-like software support similar to ARM's NEON

C2

C1

C3

B0

C'0

A'0

C0

[1] M. Solé, SPARROW: A Low-Cost Hardware/Software Co-designed SIMD Microarchitecture for AI Operations in Space Processors, DATE 2021

- Mixed Criticality Platform
- FPGA Prototype on a Xilinx VCU 118
- Configurable Vortex RISC-V GPU [1]
 - Enhancements for real-time execution and reliability
 - Qualifiable software stack for tasks requiring very high performance
 - Enable the use of GPUs from bare metal, or RTOS
 - Share the GPU among partitions
- The hardware platform will be open sourced as well as much of its software

[1] B. Tine et al, Vortex: Extending the RISC-V ISA for GPGPU and 3D-Graphics, MICRO 2021

- Mixed Criticality Platform
- FPGA Prototype on a Xilinx VCU 118
- Ethernet connectivity through Gaisler's GRLIB Ethernet controller (greth)
- Currently the driver is getting ported to Xtratum

reth0	Cobham Gaisler GR Ethernet MAC
	AHB Master 4
	APB: fc084000 - fc084100
	IRQ: 5
	edcl ip 192.168.125.2, buffer 16 kbyte

```
msole@192.168.125.1
    authenticity of host '192.168.125.1 (192.168.125.1)' can't be established.
ED25519 key fingerprint is SHA256:W6uPqsqLxV6etVMjbRiW7rcC/9QVKjl5BjlNcrfVBak.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.125.1' (ED25519) to the list of known hosts.
sole@192.168.125.1's password:
Welcome to Ubuntu 18.04.6 LTS (GNU/Linux 4.15.0-208-generic x86_64)
  Documentation: https://help.ubuntu.com
  Management:
                  https://landscape.canonical.com
  Support:
                  https://ubuntu.com/advantage
 updates can be applied immediately.
  see these additional updates run: apt list --upgradable
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.
New release '20.04.6 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
*** /dev/mapper/vg_docker-lv_docker will be checked for errors at next reboot ***
*** /dev/sdc1 will be checked for errors at next reboot ***
*** /dev/sda2 should be checked for errors ***
*** System restart required ***
Last login: Tue May 2 11:56:43 2023 from 84.88.51.129
 sole@Caos17:~$ ls
          GitHub.token OBPMark
 sole@Caos17:~$
```

- NOEL-V Integration with Vortex GPU
 - AXI interface added to Vortex
 - Started a simple experiment offloading a GPU kernel to the GPU
 - Established a programming methodology for using OpenCL in the METASAT platform Precompile a GPU kernel
 - Common practice in safety critical systems (OpenGL SC, Vulkan SC)
 - Include the kernel binary in the program executable in a dedicated GPU memory area
 - No filesystem
 - Linker script modifications

- FPGA Resource utilisation
- Current configuration:
 - 4 NOEL-V high performance + 2 SPARROW accelerators: 48% utilisation
 - To include also L2 cache L2Lite
 - GPU: 4 CUs, 4 threads each, 64bit L2 GPU cache 50% Utilisation
 - Once the design is fully functional a design space exploration will be performed to find the best configuration for the project use cases

- Able to run a simple OpenMP program on both FPGA and QEMU under RTEMS
- On going work to support SPARROW in RTEMS
 - RTEMS Compiler modifications completed
 - Support for SPARROW control register to be added to RTEMS

• • • unet32alpha1_0_upsample — root@a3de4		
ogin1:~ zsholo_v8 zshogin1:~ zshjwolf@caos17nloads z		
'build-riscv-rtems6-rv64imafdc' finished successfully (0.802s) [root@a3de48bca934:/workspace/app/matrix_multiplication_bench# ./sim-qemu		
OPENMP DISPLAY ENVIRONMENT BEGIN _OPENMP = '201511' OMP_OVNAMIC = 'FALSE' OMP_NOM_THREADS = '4' OMP_PROCE_BIND = 'FALSE' OMP_NOM_THREADS = '4' OMP_STACKSIZE = '0' OMP_STACKSIZE = '0' OMP_MAIT_POLICY = 'PASSIVE' OMP_MAX_ACTIVE_LEVELS = '1' OMP_NOM_TEAMS = '0' OMP_CANCELLATION = 'FALSE' OMP_OEAAULT_DEVICE = '0' OMP_OEFAULT_DEVICE = '0' OMP_DISPLAY_AFFINITY = 'ALSE' OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A' OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A' OMP_AFFINITY = '' GOMP_CPU_AFFINITY = '' GOMP_STACKSIZE = '0' GOMP_STACKSIZE = '0' GOMP_STACKSIZE = '0' COMP_DISPLAY_AFFINITY = ''ALSE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''BASE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''BASE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''BASE' OMP_AFFINITY = ''BASE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''BASE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''BASE' OMP_AFFINITY = ''BASE' OMP_AFFINITY = ''BASE' OMP_AFFINITY = ''BASE' OMP_AFFINITY = ''ALSE' OMP_AFFINITY = ''AL		
4 4 5		
1024 Using device: Generic device Elapsed time Host->Device: 0.0000000000 milliseconds Elapsed time kernel: 84672.7812500000 milliseconds Elapsed time Device->Host: 0.0000000000 milliseconds		
[RTEMS shutdown] CPU: 2 RTEMS version: 6.0.0.3612dc7d61d91e0bc121b2d226a1b3082ff9e333 RTEMS tools: 12.2.1 20230224 (RTEMS 6, RSB bfed51462eafcb6a5102a2d6d80b233f3c6ef635, Newlib 17ac400 executing thread ID: 0x0a010002 executing thread name: TA1		
*** FATAL ***		

Preliminary Results

Block size: 1024 base 1core: 392.225896 s transposed 1core: 86.701770 s _ valid omp 4cores: 280.271344 s - valid omp transposed 4core: 19.934385 s - valid sparrow 1core: 20.878695 s - expected error (non transposed sparrow) sparrow transposed 1core: 19.400293 s - valid sparrow omp 4core: 6.340939 s - expected error (non transposed sparrow) sparrow omp 4core: 6.340939 s - expected error (non transposed sparrow) sparrow omp transposed 4core: 5.664588 s - valid

SPARROW on a single core NOEL-V provides similar performance with a 4-core OpenMP implementation

15x overall speedup by using both multicore and SPARROW

Preliminary Results

- Block size: 4096 base 1core: 29057.139986 s transposed 1core: 5757.967587 s - valid omp 4cores: 23248.178855 s - valid 4.3X omp transposed 4core: 1339.930062 s - valid sparrow 1core: 2001.829881 s - expected error (non transposed sparrow) sparrow transposed 1core: 1452.943046 s^{3.23} valid sparrow omp 4core: 1001.405814 s - expected error (non transposed sparrow) sparrow omp transposed 4core: 852.343388 s^{3.24} valid
- SPARROW on a single core NOEL-V provides similar performance with a 4-core OpenMP implementation
- 6.7x overall speedup by using both multicore and SPARROW when the data doesn't fit in the L2 cache
 - Still opportunity for optimisation, e.g. to implement a cache blocking solution

- Multicore CPU to be modeled in QEMU
 - Add also support for SPARROW
- Vortex GPU to be simulated in Verilator
 - Cycle-accurate behavioural simulation
 - SystemVerilog to SystemC/C++

The METASAT Model-based Toolchain

- Primary focus on TASTE
 - Extend it with support for RISC-V and the METASAT platform
 - Code generation, compilation, simulation
 - Include support for SPARROW
 - Add support for Xtratum configuration for multicores
 - Shared use of devices like the Ethernet, UART and GPU
 - Integration with GPU code generated from Matlab/Simulink GPU coder
 - Configuration for OpenMP, OpenCL and other safety critical GPU languages such as Brook Auto[1], OpenGL SC 2.0, Vulkan SC, SYCL SC
 - Ada SPARK contracts for GPU code
 - Support for at least one ML framework, e.g. TensorFlow-Lite or ONNX
- All improvements will be upstreamed to TASTE's and related repositories (e.g. Ocarina)

[1] M. M. Trompouki, L. Kosmidis, Brook auto: high-level certification-friendly programming for GPU ¹⁸ powered automotive systems, DAC 2018

Project Use Cases

- 3 Project Use cases will be implemented
- OHB/DLR Use Case
 - Hardware interlocking
 - Protect against wrong software behaviour
 - Implement interlocks at software level instead of hardware
 - Reduce cost
 - Implement AI Based FDIR
 - To be accelerated on the CPU using the SPARROW AI accelerator
 - Housekeeping data from the ENMAP satellite

Project Use Cases

- 2 BSC-provided use cases based on OBPMark-ML [1][2]
- Cloud screening

4 Channels RGB/NIR mapped to binary mask (cloud/no cloud)

 $\begin{array}{c} 0 \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 500 \\ 600 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 500 \\ 600 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 500 \\ 600 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 500 \\ 600 \\ 700 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 500 \\ 600 \\ 700 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 600 \\ 700$

- Ship Detection
- To be executed on the GPU
- [1] D. Steenari et al, OBPMark (On-Board Processing Benchmarks) Open Source Computational Performance Benchmarks for Space Applications, European Workshop on On-Board Data Processing (OBDP2021). <u>https://doi.org/10.5281/zenodo.5638577</u>
- ²⁰ [2] <u>http://obpmark.org</u>

Conclusion

- METASAT will achieve a major milestone towards the use of GPUs and high performance platforms in space through model based design
- Will provide an open source reference hardware platform
 - FPGA and virtual
- Solve key limitations preventing GPUs to be adopted today in institutional missions
 - Qualifiable software stack
- Improvements in model based design tools for high performance platforms
- Open source contributions

https://metasat-project.eu/ info@metasat-project.eu

https://twitter.com/MetasatProject

https://www.linkedin.com/company/metasat-project

METASAT has received funding from the European Union's Horizon Europe programme under grant agreement number 101082622.

© 2023 Consortium Confidential