ADEPT Workshop 2024 AADL Intro and News

Bruce Lewis, AADL Committee Chair

Galois, Inc. June 14, 2024

galois

Architecture Analysis & Design Language (AADL) History & Objectives

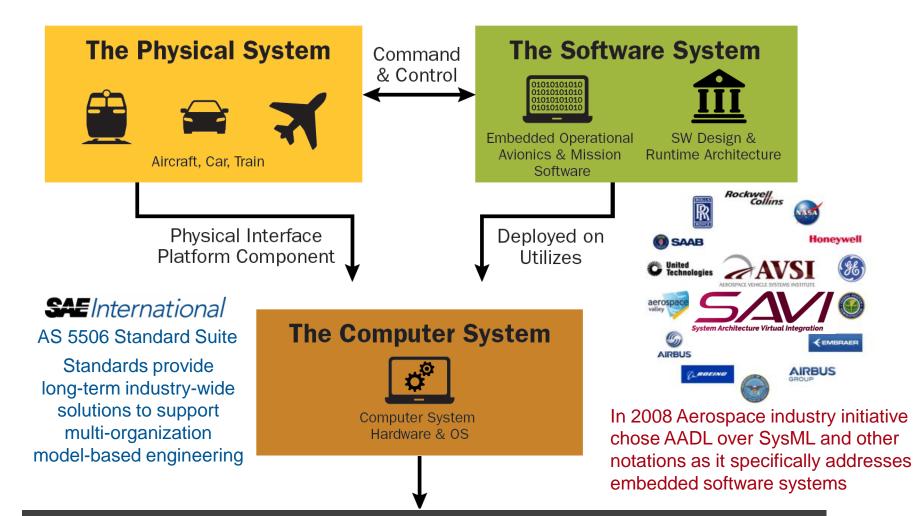
- Came out of 3 DARPA programs (9 years plus) developing Architecture Design Languages as MetaH (Steve Vestal PI)
- Experiments in Army Lab prove value so started SAE standard for AADL from MetaH
- System Architecture Virtual Integration (SAVI), an industry program, selected AADL after review of all competitors to deal with the high cost of system of aviation software integration.
- DARPA programs have since leveraged AADL (HACMS, CASE, PROVERS ...) combined with formal methods
- AADL Language Architect Peter Feiler -> Jerome Hugues
- Key concepts of AADL from the beginning Domain specific Language for RT embedded systems
 - Enable quantitative architectural analysis on virtually integrated systems.
 - Enable generative approaches to build compliant systems from verified models.
 - <u>Provide stable core concepts and language with well defined semantics</u>
 - Easy to understand engineering terms with textual and graphical expression
 - Incremental refinement to support the lifecycle with incremental analyzability
 - Flexibility to support new domains & analyses w annex sublanguages, property sets.

Architecture Analysis & Design Language SecInternational AS-5506 STANDARD SUITE

- Core AADL language standard upgrades
- V1 [A) 2004, V2 (B) 2012, V2.2 (C) 2017, V2.3 (D) 2022
 - For embedded & cyber physical software system modeling, analysis, and generative integration
 - Strongly typed component based architecture language with well-defined, rich semantics for threads, processes on partitions, subprograms and processor, memory, bus, system and device components, sampled/queued, communication, modes, end-to-end flows
- Next standard will be joint SAE/OMG standard AADL library for SysMLv2

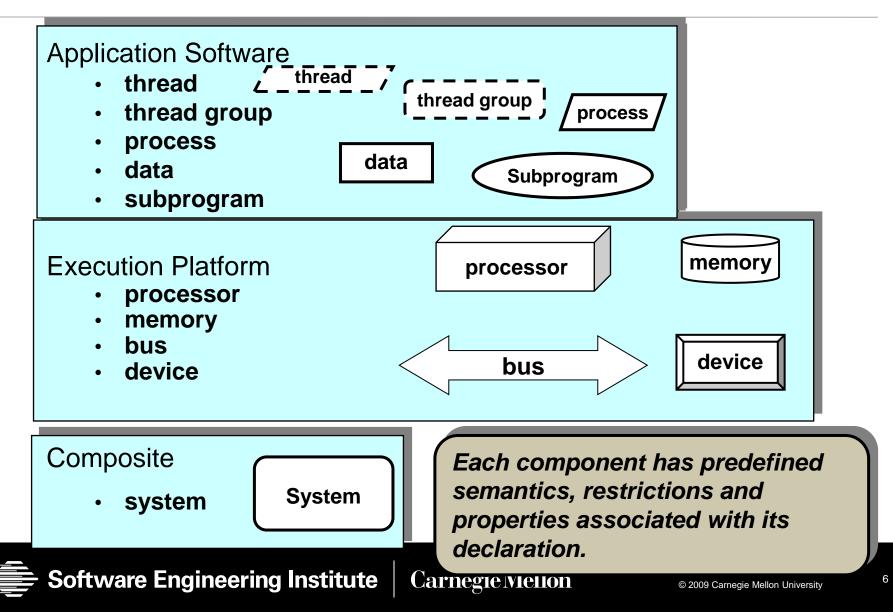
Standardized AADL Annex Extensions

- Error Model language for safety, reliability, security analysis [2006, 2015]
- ARINC653 extension for partitioned architectures [2011, 2015]
- Behavior Specification Language for components and interaction [2011, 2017]
- Data Modeling extension for interfacing with data models (UML, ASN.1, ...) [2011]
- AADL Runtime System & Code Generation [2006, 2015, RTS refined in Core in 2022]


AADL SAE AS2C Committee Activities

- Current focus is developing a SysMLv2 library for AADL
 - It is planned to be a joint OMG/SAE standard
 - It will make AADL part of SysMLv2 as a supported library integrating system engineering and embedded system design.
 - Part of OMG's Systems Modeling Community (SMC)
 - Our SMC is "Real-Time Embedded Safety-Critical Systems Working Group (RTESCWG)
 - SAE and OMG working together to formalize the joint standardization process. Both parties working together well.
 - Involves coordinated upgrades to SysMLv2 to support real time systems
 - Jerome Hughes and Gene Shreve are co-chairs of the Real Time SMC
- OMG/SAE Joint meetings
 - Two virtual meetings per month
 - Typically every other Wed 9:00-10:00 CT, Next meeting June 19th
 - You can join the OMG Managed Communities or the SAE AADL committee to attend virtual meetings.
 - To attend SMC meetings at OMG standards meetings, you need to join the SMC.
 - Next OMG standards meeting, Chicago, USA, Sept 11-12
- Progress Static part of AADL prototyped, being used on PROVERS

AADL ANALYTICALLY DESCRIBES THE REAL-TIME SYSTEM ENABLING VIRTUAL INTEGRATION

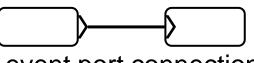


Standardized AADL captures mission and safety critical embedded software system architectures in virtually integrated analyzable models

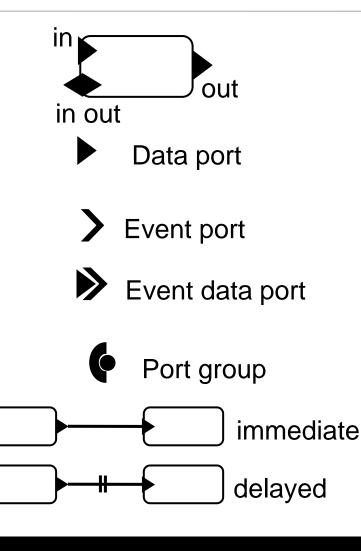
AADL Components

Ports & Connections

Ports: directional transfer of data & control

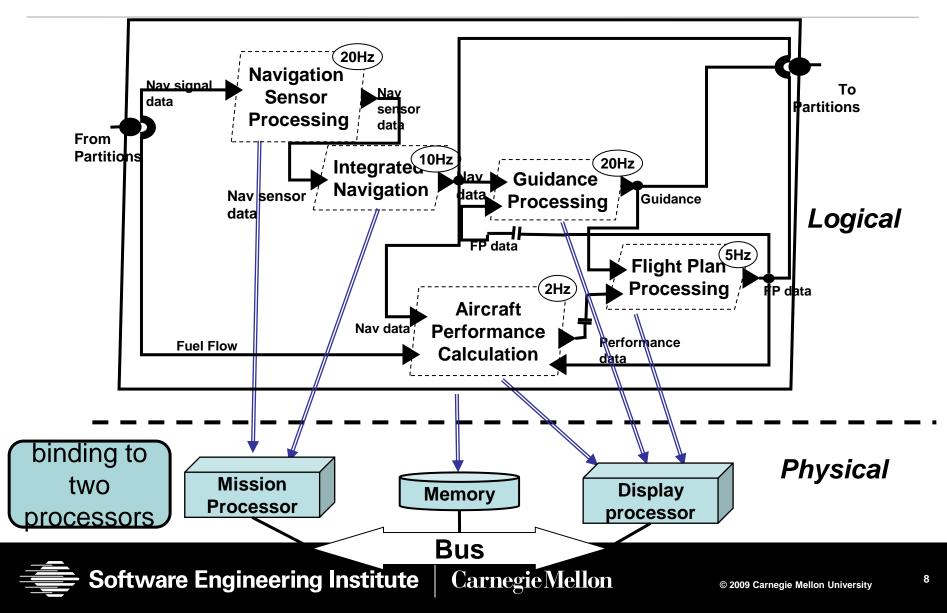

Data port: state, sampled data streams

Event port: Queued, thread dispatch & mode switch trigger


Event data port: queued messages

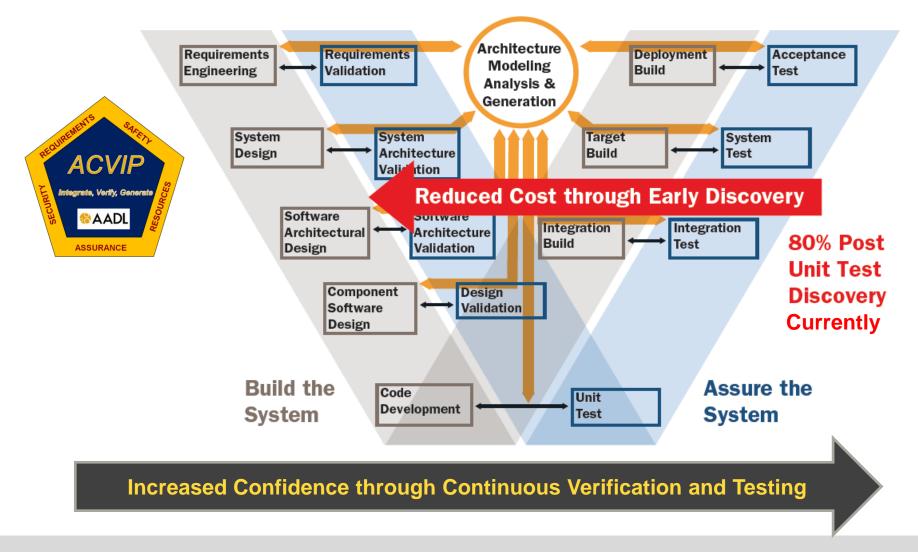
Port group: aggregation of ports into single connection point

Connection: connects ports in the direction of their flow



event port connection

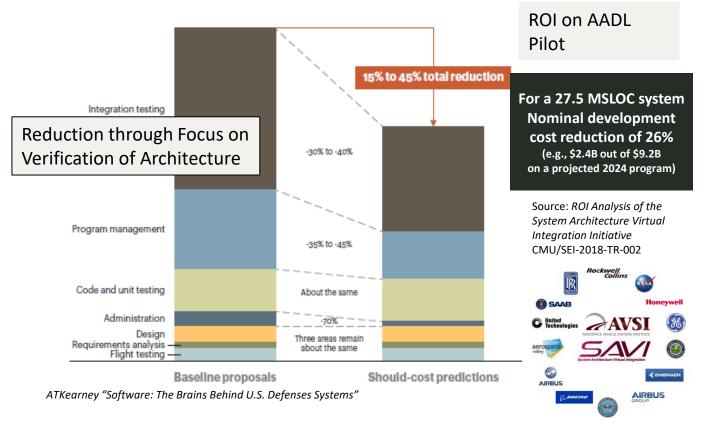
Flight Manager Bindings - 2



APPROVED FOR PUBLIC RELEASE

ACVIP PROCESS APPLIES AADL INCREMENTALLY TO CATCH INTEGRATION ISSUES EARLY

NEED FOR INTEGRATED ENGINEERING ANALYSIS OF EMBEDDED SOFTWARE SYSTEMS SIMILAR TO PHYSICAL


<u>Virtual Integrated Physical System</u> Analysis Uses Computer Models (e.g. CAD)	Virtual Integrated Software System Analysis Uses AADL Model
Aerodynamics Aero elastics Stall and Compressibility Acoustics Structures Static and Dynamic Flutter and Vibration Fatigue Drive Systems Power Transmission Wear and Fatigue Engine Power Available Fuel Required Mission Performance Payload Range Speed	Security Intrusion Integrity Confidentiality Resource Consumption Bandwidth CPU Time Power Consumption Real-Time Performance Execution Time / Deadline Deadlock / Starvation Latency Data Quality Data Precision / Accuracy Temporal Correctness Confidence Safety and Reliability MTBF FMEA FMEA Higher CPU demand Increased latency Affects temporal correctness Potential new hazard Analysis
Auto code generation from AADL Virtual Model is similar to Automated fabrication from CAD Virtual Model	

APPROVED FOR PUBLIC RELEASE

COST REDUCTION POTENTIAL THROUGH VIRTUAL INTEGRATION OF EMBEDDED SOFTWARE SYSTEMS

Summary

- AADL embedded system engineering benefits
 - Analyzable models drive development from requirements
 - Prediction of runtime characteristics at incremental fidelity levels
 - Ability to see side effects of change across RT architecture
 - Design tradespace analysis can be (and has been) automated
 - Critical design decisions are made explicit for reuse/update
 - Predictive analysis of runtime performance/effects early and throughout lifecycle greatly reduces integration and maintenance cost/risk/time
 - Early prototyping or trusted build through generative integration of components
 - Supports integration of multiple domains of analysis for RT systems on a common model with standard semantics and properties
 - Being developed to provide RT analysis capabilities for SysMLv2