Executable AADL Models
for Early System
Qualification Test

WORKSHOP ADEPT2024, BARCELONA

S. RUBINI, S. LEVIEUX, E. CARIOU, F. SINGHOFF,
H.N. TRAN, LAB-STICC, UNIV. OF BREST, BREST,
FRANCE

G. LE PLUART, THALES DMS, BREST, FRANCE

06/14/2024 G« @ W30

R

Objectives

Early “qualification test” on the architectural model of complex real-time applications
* Test performances, to validate the system temporal behavior

Generation of test inputs according to the expected operational activity (by algorithms, traces,
statistic laws, ...)

For analysis needs of a case study provided by THALES DMS.
* System engineering of a large distributed system
* With (soft) real-time constraints

Mixing function periodically released and others triggered by data arrivals.

Approach “CosiCosi”

* Transforms an AADL model into an executable model for simulation

Analysis objectives

Static analysis (AADL model level)
Osate, - Schedulability feasibility tests (e.g. RTA analysis)
AR DI HEE e - Restricted scoop of applications
Cheddar, ... - .

=» Proof, certification

Dynamic analysis (AADL model level)
- Simulation with elements of the application behavior (AADL

AADL modegg AADLInspector, Behavioral Annex)
Marhzin, ... - Larger scope of applications
=>» Unit tests, debugging on temporal criteria, simple usage scenarios

of a system

Dynamic analysis (not only on the AADL model level)

- Simulation with elements of the application components
CosiCosi tool - Take into account of the system load

- Probes (usage rate, slack time, min/max latency)

=>» Intensive tests with not fully deterministic models

Outline

1. Introduction

2. CosiCosi approach
° Principles
° Implementation

3. Experiments
> “Demo system” example

> Simulator Scalability

4. Perspectives and Conclusion

/ \) Trace
| |\\f\|\ow Pa ﬂ\ﬂ Monitoring |

= Probes

Analyze

d

Software
Architecture

Y
1
1
1
1
1
1
1
1
1
1
1
1
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
£y
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1
7
’
7
’
’
’
’
7
7
v
7
v
\

Runtime AADL RT

' i e B4
Hardware Phw (AADL runtime)
Architecture
AADL Analysis Model : Simulation model
CosiCosi/SystemC
Properties

CosiCosi Approach: “Executable Models” based on SystemC simulator,
and C++ usage scenarios, and/or C/C++ application components

CosiCosi, Simulation of AADL Model

* SystemC is a C++ library of classes for event-driven simulation of concurrent processes.

* CosiCosi: a SystemC/C++ code that simulates the software/hardware architecture defined in a
source AADL model.

* Generated by model transformation,
* Supported AADL components/features (currently): thread, data, connection/port, processor

*Not the first AADL/SystemC implementation
o For different purposes
o Built from SysRT, a multiprocessor RTOS code written in SystemC

o AADL_RT, a runtime conforming to the semantic defined in the AADL standard (scheduling,
communication protocol ...) extending SysRT

[Xiao 2017] Xiao, J., Pimentel, A., & Lipari, G. SysRT: A modular multiprocessor RTOS simulator for early design space exploration. In 2017
International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS) (pp. 38-45). IEEE.

CosiCosi executable Model Generation

C++ code using
AADL_RT library
classes

‘ DSL ADSYS SystemC/AADL_RT

@ c e | s
Q‘.) OSATE @ Heceleo

DSL ADSYS = represents a selection of the AADL concepts
allowing for executable models building

Outline

1. Introduction

2. The simulator CosiCosi
° Principles
o Implementation

3. Experiments
> “Demo system” example

> Simulator Scalability

4. Perspectives and Conclusion

AADL RT/SysRT Library

AADL_RT is built from the the SysRT library

SysRT is
> A high-level RTOS simulator written in SystemC
> Dedicated to check the respect of the timing siart_of SMuTond
requirements during the early design steps shedie deschoo
— job_arrival I 1 |schedule
Task /_ Kernel \ Architecture : : :
deadli i
[Process Management Architecture Model o ' job_end) I |
ABR 15T Task Ready Qusus m:::; :::;;:5 :
° \ B ‘. |1
fep EET Resource Management 0 T 2T Lk
G)) Resource Block Queue -_ E tlme
iy E_H General principle of SysRT: the simulator programs
App 3:DAG _ . . .
[__merrupt ancine | ST — SystemC event deliveries at the times when
) = Context switch . .
‘."/‘. \[Scheduling]/ - wigraion cos scheduling operations must be done.
EVENTnotfy(time) g wait (6me) Figures are duplicated from [Xiao 2017]
EVENT.cancelf)

Transformation Rules

connection

Data

CPU
MRTKernel
AADL Kernel

sc_port
AADL_Port

sc_channel
AADL_Connection

channel

sc_module
Task
AADL_Thread

SystemC/

AADL_RT

Implementation of AADL connections

AADL N-to-N connection model

AADL_Connection_Channel AADL_Thread

AADL_Thread /- AADL_
Port
AADL_ AU
—H

Port B GEECE
///
/ nput gieigets
Multiplexing messages / AT 'l &i .
// Another connection P\\// Global_e nt% Ordering messages

In a queue ueue .
G - according to
{/ arrival times

Duplication of the

. Managing
message for broad casting a queue Managing sampled values
to all input ports per port for each input ports

Component Configuration

sc_chapnel
AADL_Connection_Channeh, f
", configure(}

\

/
-
-
-
-

AADL Port
sc_port

AADL property values of the model are
stored in a database

Before the beginning of the simulation, the
method configure() of each component
extracts its related properties

Do not change code generators when
adding/changing/removing properties

May help to setup design space exploration
processes

Outline

1. Introduction

2. The simulator CosiCosi
° Principles
> Implementation

3. Experiments
o “Demo system” example

o Simulator Scalability

4. Perspectives and Conclusion

Example

anelyze L instance Name Period | Capacity | Dispatch | CPU
requester |_Instance of thrsavestal ;:' sensor() 20ms 2ms Per?ndic c0
_______________ = ! sensorl 30ms 2ms Periodic c0
j o trreastat E i sensor 40ms 2ms Periodic c0
f Jf>— asate | ! thr_collector | 8ms Sms Sporadic | c0
7 R - thr_savestat - Sms Aperiodic | c0
/ joener thr_reqstat 50ms | [2ms,49ms] | Periodic | env
/ / -
II ’r--------‘I ----- ?
\‘l/ l; sensaor v .
," S':' thr_collector ," Features'
R ! I]
_____________ D ; * Event and event data ports
enV I sensorl ? ! "r
{ é_ ! / * Data access
fommmm S : * N-to-1 connection
Modeling of the application usage * Multi-processor (partitioned)
- Request to save statistics on the system e Accesses in mutual exclusion to the data
o ”
- Mean rate of 20 requests/s 0 aState

- Inter-arrival time [3ms, 97ms]

=> Difficult or even impossible with static
analysis

Example trace

No deadline violation detected during simulation

Point to watch out for: collector entry queue filling (defined to 3 in the AADL
model) 2 <= 2 in the simulation, no overflow

Time 2600 ms
re q_queue_gize [31:0] =[BRRERRRAE
sensorg =t
sensorl =t
sensor?2 =t

thr collector=!
col gueue size[31:0] =t

overflow[31:0] =t
sampled value[31:08] =t
thr regdata =t

thr savedata =t

Scalability for long simulations

50000

ope 45000 &2
Ability to simulate a system during a long working period 40000 =
35000
° System time : time at the level of the simulated system 30000 E
25000 ¥
> Simulation time: execution time of the simulator itself 20000 .2
With the previous example (6 threads, 2 connections, 2 CPUs), 10 10000 2
traced features/events 0
0 10000 20000 30000 40000
Svstem time in sec
Comments 700
> The simulation time increases linearly with the system time o0
(around 1 ms to simulate 1 s of the system time) 008
400 S
> The trace file (VCD format) contents around 3 millions of events 300 9
for a simulation of 10 hours (of system time) 200 O
100 %
0 =+
0 10000 20000 30000 40000

System time in sec

Execution platform : Intel Core i9-12900, 2.4GHz, 64GB, Linux 5.15, SystemC 2.3.4

Scalability for large systems

Ability to simulate a large system

> Simulated system: multiple instances of the previous 140
example (6 threads, 2 connections, 2 CPUs), 10 traced o0 o
features/events %

> Simulation of 1 hour of system time 10 E

g0 E
Comments 50 E
> The simulation time increases linearly with the number of a0 LE
thread (around 200 ms per thread, with a slight upward E
. . 20 @
inflection for the last measure)
. - 0
° The trace file (VCD format) contents around 80 millions of o 200 200 £00 200

events for a simulation of 600 threads on 200 CPUs
Mumber of threads

Execution platform : Intel Core i9-12900, 2.4GHz, 64GB, Linux 5.15, SystemC 2.3.4

Outline

1. Introduction

2. The simulator CosiCosi
o Principles
° Implementation

3. Experiments
> “Demo system” example
o Simulator Scalability

4. Perspectives and Conclusion

Conclusion and Perspective

For a THALES DMS case study, for intensive model testing e

queue size[31:0]
sampled value[31:0]
thr_regsta
thr reqsta

The executable models allow the testers to run intensive simulation.

> But we need for code instrumentation/probes to monitor specific
properties

- Enrich the AADL model:
> To represent properties to observe

Some AADL semantic rules were difficult to implement. For example:
o Periodic tasks on immediate connections

° Instantaneous communications on delayed connections

Project status
° Only partial AADL standard covering
> We plan to complete AADL -> CosiCosi transformation
o We plan to express the probes inside the source AADL model

