
Executable AADL Models 
for Early System 
Qualification Test
WORKSHOP ADEPT2024, BARCELONA

S.  RUBIN I ,  S .  LEVIEUX,  E .  CARIOU ,  F.  S INGHOFF,  
H .N .  TRAN,  L AB-ST ICC,  UNIV.  OF  BREST,  BREST,  
FRANCE

G.  L E  PLUART,  THALES DMS,  BREST,  FRANCE

06/14/2024

1



Objectives

Early “qualification test” on the architectural model of complex real-time applications
• Test performances, to validate the system temporal behavior 

• Generation of test inputs according to the expected operational activity (by algorithms, traces, 
statistic laws, …)

• For analysis needs of a case study provided by THALES DMS. 

• System engineering of a large distributed system

• With (soft) real-time constraints

• Mixing function periodically released and others triggered by data arrivals.

Approach “CosiCosi”
• Transforms an AADL model into an executable model for simulation

2



Analysis objectives

AADL model
of a system

Osate, 
AADLInspector, 

Cheddar, …

Static analysis (AADL model level)
- Schedulability feasibility tests (e.g. RTA analysis)
- Restricted scoop of applications
 Proof, certification

AADLInspector,
Marhzin, …

Dynamic analysis (AADL model level)
- Simulation with elements of the application behavior (AADL 

Behavioral Annex) 
- Larger scope of applications
 Unit tests, debugging on temporal criteria, simple usage scenarios

CosiCosi tool

Dynamic analysis  (not only on the AADL model level)
- Simulation with elements of the application components
- Take into account of the system load
- Probes (usage rate, slack time, min/max latency)
 Intensive tests with not fully deterministic models

3



Outline

1. Introduction

2. CosiCosi approach
◦ Principles

◦ Implementation

3. Experiments
◦ “Demo system” example

◦ Simulator Scalability

4. Perspectives and Conclusion

4



Tim
in

g an
d

 fu
n

ctio
n

al  
p

ro
p

erties

Runtime
Hardware
Architecture

Software
Architecture

flow
Analyze

AADL_RT
(AADL runtime)Phw

Code
C/C++

Monitoring
Probes

Pa

Psw

AADL Analysis Model Simulation model
CosiCosi/SystemC

CosiCosi Approach:  “Executable Models” based  on SystemC simulator,  
and C++ usage scenarios, and/or C/C++ application components

Trace

5

Properties



CosiCosi, Simulation of AADL Model

• SystemC is a C++ library of classes for event-driven simulation of concurrent processes.

• CosiCosi:  a SystemC/C++ code that simulates the software/hardware architecture defined in a 
source AADL model.
• Generated by model transformation,
• Supported AADL components/features (currently): thread, data, connection/port, processor

•Not the first AADL/SystemC implementation
o For different purposes
oBuilt from SysRT, a multiprocessor RTOS code written in SystemC
oAADL_RT, a runtime conforming to the semantic defined in the AADL standard (scheduling, 

communication protocol …) extending SysRT

[Xiao 2017] Xiao, J., Pimentel, A., & Lipari, G. SysRT: A modular multiprocessor RTOS simulator for early design space exploration. In 2017 
International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS) (pp. 38-45). IEEE.

6



CosiCosi executable Model Generation

C++ code using  
AADL_RT library 
classes

OSATE

DSL ADSYS = represents a selection of the AADL concepts 
allowing for executable models building

AADL 
Model

DSL ADSYS 
Model

SystemC/AADL_RT  
Model

7



Outline

1. Introduction

2. The simulator CosiCosi
◦ Principles

◦ Implementation

3. Experiments
◦ “Demo system” example

◦ Simulator Scalability

4. Perspectives and Conclusion

8



AADL_RT/SysRT Library

AADL_RT is built from the the SysRT library

SysRT is
◦ A high-level RTOS simulator written in SystemC
◦ Dedicated to check the respect of the timing 

requirements  during the early design  steps

General principle of SysRT: the simulator programs 
SystemC event deliveries at the times when 
scheduling operations must be done.

Figures are duplicated from [Xiao 2017]

9



Transformation Rules

10

Thread Data

sc_module

Task

AADL_Thread

sc_channel

AADL_Connection_
channel

sc_port

AADL_Port

connection

CPU

MRTKernel

AADL_Kernel

1..*
ResManager

Registered in

Processor

Processor

AADL

SystemC/
AADL_RT



Another connection

Mux
queue

AADL_Connection_Channel

AADL_
Port

AADL_Thread

Broad-
cast

policy

Global_event
_queue

AADL_Thread

Input queue

AADL_
Port

Implementation of AADL connections
AADL N-to-N connection model 

Multiplexing messages 
In a queue

Duplication of the 
message for broad casting 
to all input ports

Managing
a queue

per port 

Managing sampled values 
for each input ports

Ordering messages 
according to 
arrival times

11



Component Configuration
• AADL property values of the model are 

stored in a database

• Before the beginning of the simulation,  the 
method configure() of each component 
extracts its related properties 

• Do not change code generators when 
adding/changing/removing properties

• May help to setup design space exploration 
processes

12

Database
AADL

Properties

AADL_Thread AADL_Thread

AADL_Connection_Channel

configure()

sc_channel
sc_port
AADL_Port

CPU



Outline

1. Introduction

2. The simulator CosiCosi
◦ Principles

◦ Implementation

3. Experiments
◦ “Demo system” example

◦ Simulator Scalability

4. Perspectives and Conclusion

13



Example

env

c0

Features:
• Event and event data ports
• Data access
• N-to-1 connection
• Multi-processor (partitioned)
• Accesses in mutual exclusion to the data 

“aState”

Modeling of  the application usage 
- Request to save statistics on the system
- Mean rate of 20 requests/s
- Inter-arrival time [3ms, 97ms]
=> Difficult or even impossible with static 
analysis

14



Example trace

◦ No deadline violation detected during simulation

◦ Point to watch out for:  collector entry queue filling (defined to 3 in the AADL 
model)  <= 2 in the simulation, no overflow

Queue 
size

15



Scalability for long simulations
Ability to simulate a system during a long working period

◦ System time : time at the level of the simulated system

◦ Simulation time: execution time of the simulator itself

With the previous example (6 threads, 2 connections, 2 CPUs), 10 
traced features/events

Comments
◦ The simulation time increases linearly with the system time 

(around 1 ms to simulate 1 s of the system time)

◦ The trace file (VCD format) contents around 3 millions of events 
for a simulation of 10 hours (of system time) 

Execution platform : Intel Core  i9-12900, 2.4GHz, 64GB, Linux 5.15, SystemC 2.3.4 

16



Scalability for large systems
Ability to simulate a large system 

◦ Simulated system: multiple instances of  the previous 
example (6 threads, 2 connections, 2 CPUs), 10 traced 
features/events

◦ Simulation of 1 hour of system time

Comments 
◦ The simulation time increases linearly with the number of 

thread (around 200 ms per thread, with a slight upward 
inflection for the last measure)

◦ The trace file (VCD format) contents around 80 millions of 
events for a simulation of 600 threads on 200 CPUs

Execution platform : Intel Core  i9-12900, 2.4GHz, 64GB, Linux 5.15, SystemC 2.3.4 

17



Outline

1. Introduction

2. The simulator CosiCosi
◦ Principles

◦ Implementation

3. Experiments
◦ “Demo system” example

◦ Simulator Scalability 

4. Perspectives and Conclusion

18



Conclusion and Perspective
For a THALES DMS case study, for intensive model testing 

The executable models allow the testers to run intensive simulation.

◦ But  we need for code instrumentation/probes to monitor specific 
properties 

 Enrich the AADL model:

◦ To represent properties to observe

Some AADL semantic rules were difficult to implement. For example:

◦ Periodic tasks on immediate connections

◦ Instantaneous communications on delayed connections

Project status

◦ Only partial AADL standard covering 

◦ We plan to complete AADL -> CosiCosi transformation 

◦ We plan to express the probes inside the source AADL model

It’s work ??

19


